Manuel Grundmann

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4537445/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Lack of beta-arrestin signaling in the absence of active G proteins. Nature Communications, 2018, 9, 341.	5.8	297
2	The experimental power of FR900359 to study Gq-regulated biological processes. Nature Communications, 2015, 6, 10156.	5.8	282
3	Applying label-free dynamic mass redistribution technology to frame signaling of G protein–coupled receptors noninvasively in living cells. Nature Protocols, 2011, 6, 1748-1760.	5.5	154
4	Selective Orthosteric Free Fatty Acid Receptor 2 (FFA2) Agonists. Journal of Biological Chemistry, 2011, 286, 10628-10640.	1.6	101
5	Activity of dietary fatty acids on FFA1 and FFA4 and characterisation of pinolenic acid as a dual FFA1/FFA4 agonist with potential effect against metabolic diseases. British Journal of Nutrition, 2015, 113, 1677-1688.	1.2	93
6	Chemically engineering ligand selectivity at the free fatty acid receptor 2 based on pharmacological variation between species orthologs. FASEB Journal, 2012, 26, 4951-4965.	0.2	75
7	Temporal Bias: Time-Encoded Dynamic GPCR Signaling. Trends in Pharmacological Sciences, 2017, 38, 1110-1124.	4.0	68
8	Identification of a Potent and Selective Free Fatty Acid Receptor 1 (FFA1/GPR40) Agonist with Favorable Physicochemical and in Vitro ADME Properties. Journal of Medicinal Chemistry, 2011, 54, 6691-6703.	2.9	65
9	Reevaluation of Fatty Acid Receptor 1 as a Drug Target for the Stimulation of Insulin Secretion in Humans. Diabetes, 2013, 62, 2106-2111.	0.3	64
10	Discovery of TUG-770: A Highly Potent Free Fatty Acid Receptor 1 (FFA1/GPR40) Agonist for Treatment of Type 2 Diabetes. ACS Medicinal Chemistry Letters, 2013, 4, 441-445.	1.3	58
11	Pharmacology of Free Fatty Acid Receptors and Their Allosteric Modulators. International Journal of Molecular Sciences, 2021, 22, 1763.	1.8	55
12	Discovery of a Potent and Selective Free Fatty Acid Receptor 1 Agonist with Low Lipophilicity and High Oral Bioavailability. Journal of Medicinal Chemistry, 2013, 56, 982-992.	2.9	52
13	Conjugated Linoleic Acids Mediate Insulin Release through Islet G Protein-coupled Receptor FFA1/GPR40. Journal of Biological Chemistry, 2011, 286, 11890-11894.	1.6	51
14	Free Fatty Acid Receptor 1 (FFA1/GPR40) Agonists: Mesylpropoxy Appendage Lowers Lipophilicity and Improves ADME Properties. Journal of Medicinal Chemistry, 2012, 55, 6624-6628.	2.9	50
15	A Cell-Permeable Inhibitor to Trap Gαq Proteins in the Empty Pocket Conformation. Chemistry and Biology, 2014, 21, 890-902.	6.2	47
16	<i>N</i> -Benzylbenzamides: A Novel Merged Scaffold for Orally Available Dual Soluble Epoxide Hydrolase/Peroxisome Proliferator-Activated Receptor γ Modulators. Journal of Medicinal Chemistry, 2016, 59, 61-81.	2.9	44
17	WNT Stimulation Dissociates a Frizzled 4 Inactive-State Complex with G <i>α</i> _{12/13} . Molecular Pharmacology, 2016, 90, 447-459.	1.0	33
18	Direct Blood Pressure-Independent Anti-Fibrotic Effects by the Selective Nonsteroidal Mineralocorticoid Receptor Antagonist Finerenone in Progressive Models of Kidney Fibrosis. American Journal of Nephrology, 2021, 52, 588-601.	1.4	31

Manuel Grundmann

#	Article	IF	CITATIONS
19	A Molecular Mechanism for Sequential Activation of a G Protein-Coupled Receptor. Cell Chemical Biology, 2016, 23, 392-403.	2.5	30
20	Label-Free Biosensor Assays in GPCR Screening. Methods in Molecular Biology, 2015, 1272, 199-213.	0.4	29
21	cNMP-AMs mimic and dissect bacterial nucleotidyl cyclase toxin effects. Biochemical and Biophysical Research Communications, 2014, 451, 497-502.	1.0	28
22	The molecular mechanism by which saturated lysophosphatidylcholine attenuates the metastatic capacity of melanoma cells. FEBS Open Bio, 2016, 6, 1297-1309.	1.0	19
23	Label-Free Whole Cell Biosensing for High-Throughput Discovery of Activators and Inhibitors Targeting G Protein-Activated Inwardly Rectifying Potassium Channels. ACS Omega, 2018, 3, 14814-14823.	1.6	10
24	Allosteric targeting of the FFA2 receptor (GPR43) restores responsiveness of desensitized human neutrophils. Journal of Leukocyte Biology, 2021, 109, 741-751.	1.5	9
25	Detection of free fatty acid receptor 1 expression: the critical role of negative and positive controls. Diabetologia, 2014, 57, 776-780.	2.9	8
26	Labelâ€Free Dynamic Mass Redistribution and Bioâ€Impedance Methods for Drug Discovery. Current Protocols in Pharmacology, 2017, 77, 9.24.1-9.24.21.	4.0	8
27	Pro-Angiogenic Effects of Latent Heparanase and Thrombin Receptor-Mediated Pathways—Do They Share a Common Ground in Melanoma Cells?. Thrombosis and Haemostasis, 2018, 118, 1803-1814.	1.8	8
28	A flow cytometry approach reveals heterogeneity in conventional subsets of murine renal mononuclear phagocytes. Scientific Reports, 2021, 11, 13251.	1.6	8
29	Holistic Methods for the Analysis of cNMP Effects. Handbook of Experimental Pharmacology, 2015, 238, 339-357.	0.9	7
30	Pharmacological inhibition of Vanin-1 is not protective in models of acute and chronic kidney disease. American Journal of Physiology - Renal Physiology, 2021, 320, F61-F73.	1.3	5
31	Establishment of a novel, cell-based autotaxin assay. Analytical Biochemistry, 2021, 630, 114322.	1.1	0