
## Juan Manuel RuÃ-z-Lozano

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4537325/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                                                            | IF                 | CITATIONS           |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|---------------------|
| 1  | Elucidating the Possible Involvement of Maize Aquaporins in the Plant Boron Transport and<br>Homeostasis Mediated by Rhizophagus irregularis under Drought Stress Conditions. International<br>Journal of Molecular Sciences, 2020, 21, 1748.                                      | 1.8                | 17                  |
| 2  | Radial water transport in arbuscular mycorrhizal maize plants under drought stress conditions is affected by indole-acetic acid (IAA) application. Journal of Plant Physiology, 2020, 246-247, 153115.                                                                             | 1.6                | 35                  |
| 3  | Elucidating the Possible Involvement of Maize Aquaporins and Arbuscular Mycorrhizal Symbiosis in the Plant Ammonium and Urea Transport under Drought Stress Conditions. Plants, 2020, 9, 148.                                                                                      | 1.6                | 20                  |
| 4  | Contribution of the arbuscular mycorrhizal symbiosis to the regulation of radial root water<br>transport in maize plants under water deficit. Environmental and Experimental Botany, 2019, 167,<br>103821.                                                                         | 2.0                | 33                  |
| 5  | Phenotypic and molecular traits determine the tolerance of olive trees to drought stress. Plant<br>Physiology and Biochemistry, 2019, 139, 521-527.                                                                                                                                | 2.8                | 14                  |
| 6  | The arbuscular mycorrhizal symbiosis regulates aquaporins activity and improves root cell water permeability in maize plants subjected to water stress. Plant, Cell and Environment, 2019, 42, 2274-2290.                                                                          | 2.8                | 69                  |
| 7  | Rhizobial symbiosis modifies root hydraulic properties in bean plants under non-stressed and salinity-stressed conditions. Planta, 2019, 249, 1207-1215.                                                                                                                           | 1.6                | 14                  |
| 8  | Molecular Insights into the Involvement of a Never Ripe Receptor in the Interaction Between Two<br>Beneficial Soil Bacteria and Tomato Plants Under Well-Watered and Drought Conditions. Molecular<br>Plant-Microbe Interactions, 2018, 31, 633-650.                               | 1.4                | 23                  |
| 9  | Arbuscular mycorrhizal symbiosis and salicylic acid regulate aquaporins and root hydraulic<br>properties in maize plants subjected to drought. Agricultural Water Management, 2018, 202, 271-284.                                                                                  | 2.4                | 56                  |
| 10 | Involvement of the def-1 Mutation in the Response of Tomato Plants to Arbuscular Mycorrhizal<br>Symbiosis Under Well-Watered and Drought Conditions. Plant and Cell Physiology, 2018, 59, 248-261.                                                                                 | 1.5                | 27                  |
| 11 | Improvement of Salt Tolerance in Rice Plants by Arbuscular Mycorrhizal Symbiosis. Soil Biology, 2018, , 259-279.                                                                                                                                                                   | 0.6                | 5                   |
| 12 | Arbuscular mycorrhizal symbiosis modifies the effects of a nitric oxide donor (sodium) Tj ETQq0 0 0 rgBT /Overloo<br>lettuce plants under well watered and drought conditions. Symbiosis, 2018, 74, 11-20.                                                                         | ck 10 Tf 50<br>1.2 | ) 307 Td (nit<br>11 |
| 13 | Tomato ethylene sensitivity determines interaction with plant growth-promoting bacteria. Annals of Botany, 2017, 120, 101-122.                                                                                                                                                     | 1.4                | 16                  |
| 14 | Transcriptomic analysis reveals the importance of JA-Ile turnover in the response of Arabidopsis<br>plants to plant growth promoting rhizobacteria and salinity. Environmental and Experimental Botany,<br>2017, 143, 10-19.                                                       | 2.0                | 24                  |
| 15 | Ethylene sensitivity and relative air humidity regulate root hydraulic properties in tomato plants.<br>Planta, 2017, 246, 987-997.                                                                                                                                                 | 1.6                | 8                   |
| 16 | Arbuscular mycorrhiza effects on plant performance under osmotic stress. Mycorrhiza, 2017, 27, 639-657.                                                                                                                                                                            | 1.3                | 113                 |
| 17 | Enhanced Drought Stress Tolerance by the Arbuscular Mycorrhizal Symbiosis in a Drought-Sensitive<br>Maize Cultivar Is Related to a Broader and Differential Regulation of Host Plant Aquaporins than in a<br>Drought-Tolerant Cultivar. Frontiers in Plant Science, 2017, 8, 1056. | 1.7                | 138                 |
| 18 | Exploring the use of recombinant inbred lines in combination with beneficial microbial inoculants<br>(AM fungus and PGPR) to improve drought stress tolerance in tomato. Environmental and<br>Experimental Botany, 2016, 131, 47-57.                                               | 2.0                | 104                 |

| #  | Article                                                                                                                                                                                                                                                                                   | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Regulation of cation transporter genes by the arbuscular mycorrhizal symbiosis in rice plants<br>subjected to salinity suggests improved salt tolerance due to reduced Na+ root-to-shoot distribution.<br>Mycorrhiza, 2016, 26, 673-684.                                                  | 1.3 | 152       |
| 20 | Effects of different arbuscular mycorrhizal fungal backgrounds and soils on olive plants growth<br>and water relation properties under wellâ€watered and drought conditions. Plant, Cell and<br>Environment, 2016, 39, 2498-2514.                                                         | 2.8 | 59        |
| 21 | Arbuscular mycorrhizal symbiosis induces strigolactone biosynthesis under drought and improves drought tolerance in lettuce and tomato. Plant, Cell and Environment, 2016, 39, 441-452.                                                                                                   | 2.8 | 321       |
| 22 | Arbuscular mycorrhizal symbiosis and methyl jasmonate avoid the inhibition of root hydraulic conductivity caused by drought. Mycorrhiza, 2016, 26, 111-122.                                                                                                                               | 1.3 | 86        |
| 23 | Localized and nonâ€localized effects of arbuscular mycorrhizal symbiosis on accumulation of<br>osmolytes and aquaporins and on antioxidant systems in maize plants subjected to total or partial<br>root drying. Plant, Cell and Environment, 2015, 38, 1613-1627.                        | 2.8 | 91        |
| 24 | Arbuscular mycorrhizal symbiosis ameliorates the optimum quantum yield of photosystem II and<br>reduces non-photochemical quenching in rice plants subjected to salt stress. Journal of Plant<br>Physiology, 2015, 185, 75-83.                                                            | 1.6 | 151       |
| 25 | Autochthonous arbuscular mycorrhizal fungi and Bacillus thuringiensis from a degraded<br>Mediterranean area can be used to improve physiological traits and performance of a plant of<br>agronomic interest under drought conditions. Plant Physiology and Biochemistry, 2015, 90, 64-74. | 2.8 | 88        |
| 26 | Photosynthetic down-regulation in N2-fixing alfalfa under elevated CO2 alters rubisco content and<br>decreases nodule metabolism via nitrogenase and tricarboxylic acid cycle. Acta Physiologiae<br>Plantarum, 2014, 36, 2607-2617.                                                       | 1.0 | 6         |
| 27 | New Insights into the Regulation of Aquaporins by the Arbuscular Mycorrhizal Symbiosis in Maize<br>Plants Under Drought Stress and Possible Implications for Plant Performance. Molecular<br>Plant-Microbe Interactions, 2014, 27, 349-363.                                               | 1.4 | 206       |
| 28 | Enhancement of root hydraulic conductivity by methyl jasmonate and the role of calcium and abscisic acid in this process. Plant, Cell and Environment, 2014, 37, 995-1008.                                                                                                                | 2.8 | 88        |
| 29 | Photosynthetic and Molecular Markers of CO <sub>2</sub> â€mediated Photosynthetic Downregulation<br>in Nodulated Alfalfa. Journal of Integrative Plant Biology, 2013, 55, 721-734.                                                                                                        | 4.1 | 31        |
| 30 | Importance of native arbuscular mycorrhizal inoculation in the halophyte Asteriscus maritimus for successful establishment and growth under saline conditions. Plant and Soil, 2013, 370, 175-185.                                                                                        | 1.8 | 43        |
| 31 | A native Glomus intraradices strain from a Mediterranean saline area exhibits salt tolerance and enhanced symbiotic efficiency with maize plants under salt stress conditions. Plant and Soil, 2013, 366, 333-349.                                                                        | 1.8 | 63        |
| 32 | Diversity of arbuscular mycorrhizal fungi in the rhizosphere of Asteriscus maritimus (L.) Less., a<br>representative plant species in arid and saline Mediterranean ecosystems. Journal of Arid<br>Environments, 2013, 97, 170-175.                                                       | 1.2 | 39        |
| 33 | Arbuscular mycorrhizal symbiosis influences strigolactone production under salinity and alleviates salt stress in lettuce plants. Journal of Plant Physiology, 2013, 170, 47-55.                                                                                                          | 1.6 | 299       |
| 34 | Arbuscular mycorrhizal fungi native from a <scp>M</scp> editerranean saline area enhance maize tolerance to salinity through improved ion homeostasis. Plant, Cell and Environment, 2013, 36, 1771-1782.                                                                                  | 2.8 | 195       |
| 35 | Native arbuscular mycorrhizal fungi isolated from a saline habitat improved maize antioxidant systems and plant tolerance to salinity. Plant Science, 2013, 201-202, 42-51.                                                                                                               | 1.7 | 155       |
| 36 | <i>Diversispora clara</i> ( <i>Glomeromycetes</i> )— a new species from saline dunes in the Natural<br>Park Cabo de Gata (Spain). Mycotaxon, 2012, 118, 73-81.                                                                                                                            | 0.1 | 8         |

| #  | Article                                                                                                                                                                                                                              | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | The Aquaporin <i>TcAQP1</i> of the Desert Truffle <i>Terfezia claveryi</i> Is a Membrane Pore for<br>Water and CO <sub>2</sub> Transport. Molecular Plant-Microbe Interactions, 2012, 25, 259-266.                                   | 1.4 | 33        |
| 38 | Plant potassium content modifies the effects of arbuscular mycorrhizal symbiosis on root hydraulic properties in maize plants. Mycorrhiza, 2012, 22, 555-564.                                                                        | 1.3 | 50        |
| 39 | Regulation by arbuscular mycorrhizae of the integrated physiological response to salinity in plants:<br>new challenges in physiological and molecular studies. Journal of Experimental Botany, 2012, 63,<br>4033-4044.               | 2.4 | 435       |
| 40 | Regulation of root water uptake under abiotic stress conditions. Journal of Experimental Botany, 2012, 63, 43-57.                                                                                                                    | 2.4 | 487       |
| 41 | Regulation of Root Water Uptake Under Drought Stress Conditions. , 2012, , 113-127.                                                                                                                                                  |     | 13        |
| 42 | Contribution of Arbuscular Mycorrhizal Symbiosis to Plant Drought Tolerance: State of the Art. ,<br>2012, , 335-362.                                                                                                                 |     | 33        |
| 43 | Arbuscular mycorrhizal symbiosis increases relative apoplastic water flow in roots of the host plant under both well-watered and drought stress conditions. Annals of Botany, 2012, 109, 1009-1017.                                  | 1.4 | 220       |
| 44 | Microbial enhancement of crop resource use efficiency. Current Opinion in Biotechnology, 2012, 23, 236-242.                                                                                                                          | 3.3 | 108       |
| 45 | Salinity stress alleviation using arbuscular mycorrhizal fungi. A review. Agronomy for Sustainable<br>Development, 2012, 32, 181-200.                                                                                                | 2.2 | 521       |
| 46 | Azospirillum and arbuscular mycorrhizal colonization enhance rice growth and physiological traits under well-watered and drought conditions. Journal of Plant Physiology, 2011, 168, 1031-1037.                                      | 1.6 | 181       |
| 47 | The application of a treated sugar beet waste residue to soil modifies the responses of mycorrhizal and non mycorrhizal lettuce plants to drought stress. Plant and Soil, 2011, 346, 153-166.                                        | 1.8 | 19        |
| 48 | Brevibacillus, Arbuscular Mycorrhizae and Remediation of Metal Toxicity in Agricultural Soils. Soil<br>Biology, 2011, , 235-258.                                                                                                     | 0.6 | 5         |
| 49 | Regulation of plasma membrane aquaporins by inoculation with a Bacillus megaterium strain in maize<br>(Zea mays L.) plants under unstressed and salt-stressed conditions. Planta, 2010, 232, 533-543.                                | 1.6 | 224       |
| 50 | Host Response to Osmotic Stresses: Stomatal Behaviour and Water Use Efficiency of Arbuscular<br>Mycorrhizal Plants. , 2010, , 239-256.                                                                                               |     | 51        |
| 51 | The arbuscular mycorrhizal symbiosis enhances the photosynthetic efficiency and the antioxidative response of rice plants subjected to drought stress. Journal of Plant Physiology, 2010, 167, 862-869.                              | 1.6 | 247       |
| 52 | Modulation of Aquaporin Genes by the Arbuscular Mycorrhizal Symbiosis in Relation to Osmotic<br>Stress Tolerance. Cellular Origin and Life in Extreme Habitats, 2010, , 357-374.                                                     | 0.3 | 28        |
| 53 | Expression Analysis of the First Arbuscular Mycorrhizal Fungi Aquaporin Described Reveals<br>Concerted Gene Expression Between Salt-Stressed and Nonstressed Mycelium. Molecular<br>Plant-Microbe Interactions, 2009, 22, 1169-1178. | 1.4 | 105       |
| 54 | Exogenous ABA accentuates the differences in root hydraulic properties between mycorrhizal and<br>non mycorrhizal maize plants through regulation of PIP aquaporins. Plant Molecular Biology, 2009,<br>70, 565-579.                  | 2.0 | 95        |

| #  | Article                                                                                                                                                                                                                                                       | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Hydrogen peroxide effects on root hydraulic properties and plasma membrane aquaporin regulation<br>in Phaseolus vulgaris. Plant Molecular Biology, 2009, 70, 647-661.                                                                                         | 2.0 | 68        |
| 56 | Antioxidant activities and metal acquisition in mycorrhizal plants growing in a heavy-metal<br>multicontaminated soil amended with treated lignocellulosic agrowaste. Applied Soil Ecology, 2009,<br>41, 168-177.                                             | 2.1 | 81        |
| 57 | Influence of Salinity on the In Vitro Development of Glomus intraradices and on the In Vivo<br>Physiological and Molecular Responses of Mycorrhizal Lettuce Plants. Microbial Ecology, 2008, 55,<br>45-53.                                                    | 1.4 | 298       |
| 58 | Plant Responses to Drought Stress and Exogenous ABA Application are Modulated Differently by<br>Mycorrhization in Tomato and an ABA-deficient Mutant (Sitiens). Microbial Ecology, 2008, 56, 704-719.                                                         | 1.4 | 111       |
| 59 | Differential Effects of a Bacillus megaterium Strain on Lactuca sativa Plant Growth Depending on the<br>Origin of the Arbuscular Mycorrhizal Fungus Coinoculated: Physiologic and Biochemical Traits.<br>Journal of Plant Growth Regulation, 2008, 27, 10-18. | 2.8 | 75        |
| 60 | Evaluation of the Possible Participation of Drought-induced Genes in the Enhanced Tolerance of Arbuscular Mycorrhizal Plants to Water Deficit. , 2008, , 185-205.                                                                                             |     | 16        |
| 61 | Mycorrhizal and non-mycorrhizal Lactuca sativa plants exhibit contrasting responses to exogenous<br>ABA during drought stress and recovery. Journal of Experimental Botany, 2008, 59, 2029-2041.                                                              | 2.4 | 200       |
| 62 | How does arbuscular mycorrhizal symbiosis regulate root hydraulic properties and plasma membrane<br>aquaporins in Phaseolus vulgaris under drought, cold or salinity stresses?. New Phytologist, 2007,<br>173, 808-816.                                       | 3.5 | 382       |
| 63 | A gene from the arbuscular mycorrhizal fungus Glomus intraradices encoding a binding protein is<br>up-regulated by drought stress in some mycorrhizal plants. Environmental and Experimental Botany,<br>2007, 60, 251-256.                                    | 2.0 | 33        |
| 64 | Two bacterial strains isolated from a Zn-polluted soil enhance plant growth and mycorrhizal efficiency under Zn-toxicity. Chemosphere, 2006, 62, 1523-1533.                                                                                                   | 4.2 | 176       |
| 65 | Does the enhanced tolerance of arbuscular mycorrhizal plants to water deficit involve modulation of droughtâ€induced plant genes?. New Phytologist, 2006, 171, 693-698.                                                                                       | 3.5 | 89        |
| 66 | PIP Aquaporin Gene Expression in Arbuscular Mycorrhizal GlycineÂmax and Lactuca Âsativa Plants in<br>Relation to Drought Stress Tolerance. Plant Molecular Biology, 2006, 60, 389-404.                                                                        | 2.0 | 212       |
| 67 | Identification of a Gene from the Arbuscular Mycorrhizal Fungus Glomus intraradices Encoding for a 14-3-3 Protein that is Up-Regulated by Drought Stress during the AM Symbiosis. Microbial Ecology, 2006, 52, 575-582.                                       | 1.4 | 56        |
| 68 | Impairment of NtAQP1 gene expression in tobacco plants does not affect root colonisation pattern by arbuscular mycorrhizal fungi but decreases their symbiotic efficiency under drought. Mycorrhiza, 2005, 15, 417-423.                                       | 1.3 | 41        |
| 69 | Evaluation of the role of genes encoding for dehydrin proteins (LEA D-11) during drought stress in arbuscular mycorrhizal Glycine max and Lactuca sativa plants. Journal of Experimental Botany, 2005, 56, 1933-1942.                                         | 2.4 | 61        |
| 70 | Arbuscular mycorrhizal influence on leaf water potential, solute accumulation, and oxidative stress<br>in soybean plants subjected to drought stress. Journal of Experimental Botany, 2004, 55, 1743-1750.                                                    | 2.4 | 441       |
| 71 | Evaluation of the role of genes encoding for Δ1-pyrroline-5-carboxylate synthetase (P5CS) during drought stress in arbuscular mycorrhizal Glycine max and Lactuca sativa plants. Physiological and Molecular Plant Pathology, 2004, 65, 211-221.              | 1.3 | 73        |
| 72 | Influence of a Bacillus sp. on physiological activities of two arbuscular mycorrhizal fungi and on plant responses to PEG-induced drought stress. Mycorrhiza, 2003, 13, 249-256.                                                                              | 1.3 | 145       |

| #  | Article                                                                                                                                                                                                                                   | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Arbuscular mycorrhizal symbiosis and alleviation of osmotic stress. New perspectives for molecular studies. Mycorrhiza, 2003, 13, 309-317.                                                                                                | 1.3 | 503       |
| 74 | Contribution of six arbuscular mycorrhizal fungal isolates to water uptake by Lactuca sativa plants<br>under drought stress. Physiologia Plantarum, 2003, 119, 526-533.                                                                   | 2.6 | 242       |
| 75 | Antioxidant activities in mycorrhizal soybean plants under drought stress and their possible relationship to the process of nodule senescence. New Phytologist, 2003, 157, 135-143.                                                       | 3.5 | 219       |
| 76 | Influence of bacterial strains isolated from lead-polluted soil and their interactions with arbuscular<br>mycorrhizae on the growth of Trifolium pratense L. under lead toxicity. Canadian Journal of<br>Microbiology, 2003, 49, 577-588. | 0.8 | 113       |
| 77 | Beneficial effects of indigenous Cd-tolerant and Cd-sensitive Glomus mosseae associated with a<br>Cd-adapted strain of Brevibacillus sp. in improving plant tolerance to Cd contamination. Applied Soil<br>Ecology, 2003, 24, 177-186.    | 2.1 | 92        |
| 78 | Arbuscular mycorrhizal symbiosis can alleviate drought-induced nodule senescence in soybean plants. New Phytologist, 2001, 151, 493-502.                                                                                                  | 3.5 | 151       |
| 79 | Title is missing!. Plant Growth Regulation, 2001, 34, 347-352.                                                                                                                                                                            | 1.8 | 10        |
| 80 | Cloning of cDNAs encoding SODs from lettuce plants which show differential regulation by<br>arbuscular mycorrhizal symbiosis and by drought stress. Journal of Experimental Botany, 2001, 52,<br>2241-2242.                               | 2.4 | 62        |
| 81 | Differential contribution of arbuscular mycorrhizal fungi to plant nitrate uptake ( <sup>15</sup> N)<br>under increasing N supply to the soil. Canadian Journal of Botany, 2001, 79, 1175-1180.                                           | 1.2 | 48        |
| 82 | Mycorrhizal colonization and drought stress affect Δ13 C in CO2 -labeled lettuce plants. Physiologia<br>Plantarum, 2000, 109, 268-273.                                                                                                    | 2.6 | 2         |
| 83 | A Burkholderia Strain Living Inside the Arbuscular Mycorrhizal Fungus Gigaspora margarita Possesses<br>the vacB Gene, Which Is Involved in Host Cell Colonization by Bacteria. Microbial Ecology, 2000, 39,<br>137-144.                   | 1.4 | 53        |
| 84 | Symbiotic efficiency and infectivity of an autochthonous arbuscular mycorrhizal Glomus sp. from saline soils and Glomus deserticola under salinity. Mycorrhiza, 2000, 10, 137-143.                                                        | 1.3 | 209       |
| 85 | Genes involved in resistance to powdery mildew in barley differentially modulate root colonization by the mycorrhizal fungus Glomus mosseae. Mycorrhiza, 1999, 9, 237-240.                                                                | 1.3 | 48        |
| 86 | Plant δ15N associated with arbuscular mycorrhization, drought and nitrogen deficiency. , 1999, 13, 1320-1324.                                                                                                                             |     | 36        |
| 87 | Identification of a Putative P-Transporter Operon in the Genome of a Burkholderia Strain Living inside<br>the Arbuscular Mycorrhizal Fungus Gigaspora margarita. Journal of Bacteriology, 1999, 181, 4106-4109.                           | 1.0 | 46        |
| 88 | Viability and infectivity of mycorrhizal spores after long term storage in soils with different water potentials. Applied Soil Ecology, 1996, 3, 183-186.                                                                                 | 2.1 | 17        |
| 89 | Mycorrhizal colonization and drought stress as factors affecting nitrate reductase activity in lettuce plants. Agriculture, Ecosystems and Environment, 1996, 60, 175-181.                                                                | 2.5 | 87        |
| 90 | Superoxide dismutase activity in arbuscular mycorrhizal Lactuca sativa plants subjected to drought<br>stress. New Phytologist, 1996, 134, 327-333.                                                                                        | 3.5 | 123       |

| #  | Article                                                                                                                                                                          | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91 | Alleviation of salt stress by arbuscular-mycorrhizal Glomus species in Lactuca sativa plants.<br>Physiologia Plantarum, 1996, 98, 767-772.                                       | 2.6 | 195       |
| 92 | Influence of different Glomus species on the time-course of physiological plant responses of lettuce to progressive drought stress periods. Plant Science, 1995, 110, 37-44.     | 1.7 | 76        |
| 93 | Hyphal contribution to water uptake in mycorrhizal plants as affected by the fungal species and water status. Physiologia Plantarum, 1995, 95, 472-478.                          | 2.6 | 27        |
| 94 | Effects of arbuscular-mycorrhizal glomus species on drought tolerance: physiological and nutritional plant responses. Applied and Environmental Microbiology, 1995, 61, 456-460. | 1.4 | 270       |
| 95 | Categorization of the water status of rice inoculated with arbuscular mycorrhizae and with water deficit. Agronomy Mesoamerican, 0, , 339-355.                                   | 0.1 | 2         |