Feng Yang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4537199/publications.pdf

Version: 2024-02-01

50	942	18	29
papers	citations	h-index	g-index
50	50	50	631 citing authors
all docs	docs citations	times ranked	

#	Article	IF	CITATIONS
1	Separator impregnated with polyvinyl alcohol to simultaneously improve electrochemical performances and compression resistance. Electrochimica Acta, 2022, 403, 139568.	5.2	11
2	Low-Cost Mass Manufacturing Technique for the Shutdown-Functionalized Lithium-Ion Battery Separator Based on Al ₂ O ₃ Coating Online Construction during the β-iPP Cavitation Process. ACS Applied Materials & Samp; Interfaces, 2022, 14, 6714-6728.	8.0	26
3	Low-Cost and Large-Scale Fabricating Technology for High-Performance Lithium-Ion Battery Composite Separators with Connected Nano-Al ₂ O ₃ Coating. ACS Applied Energy Materials, 2022, 5, 615-626.	5.1	12
4	Design of molecular structure for commercial polyethylene 100 pipe. Journal of Polymer Research, 2022, 29, 1.	2.4	2
5	Facile manufacture technique for lithium-ion batteries composite separator via online construction of fumed SiO2 coating. Materials and Design, 2022, 215, 110476.	7.0	8
6	Facile Preparation of a Trilayer Separator with a Shutdown Function Based on the Compounding of \hat{l}^2 -Crystal Polypropylene and Hydrogenated Petroleum Resin. Industrial & Engineering Chemistry Research, 2022, 61, 9015-9024.	3.7	0
7	Construction of a composite microporous polyethylene membrane with enhanced fouling resistance for water treatment. Journal of Membrane Science, 2021, 618, 118679.	8.2	42
8	Effect of molecular weight and isotacticity distribution on hard elastic polypropylene cast films and membranes. Polymer International, 2021, 70, 212-221.	3.1	2
9	The unusual delamination phenomenon of three kinds of lithiumâ€ion battery separators. Polymer International, 2021, 70, 288-297.	3.1	3
10	Comparison of the Structural Evolution of \hat{I}^2 Polypropylene during the Sequential and Simultaneous Biaxial Stretching Process. Chinese Journal of Polymer Science (English Edition), 2021, 39, 620-631.	3.8	7
11	Microporous structure and mechanical behavior of separators used for lithium-ion battery. Journal of Polymer Research, 2021, 28, 1.	2.4	4
12	Improving the low-temperature toughness of PPR pipe by compounding with PERT. Journal of Polymer Research, 2021, 28, 1.	2.4	5
13	Preparation of highly oriented \hat{l}^2 polypropylene and its pore formation mechanism during stretching. Polymer Crystallization, 2021, 4, e10183.	0.8	9
14	Preparation and Performance Evaluation of Antibacterial Melt-Spun Polyurethane Fiber Loaded with Berberine Hydrochloride. Polymers, 2021, 13, 2336.	4.5	7
15	Development of Multilayer Polypropylene Separators for Lithium-Ion Batteries via an Industrial Process. Industrial & Engineering Chemistry Research, 2021, 60, 11611-11620.	3.7	5
16	Investigation on cavitation behavior of ultrahigh molecular weight polyethylene during stretching in wet process and dry process. Polymer, 2021, 230, 124081.	3.8	19
17	Facile Preparation of a Lithium-Ion Battery Separator with Thermal Shutdown Function Based on Polypropylene/Polyethylene Microsphere Composites. Industrial & Engineering Chemistry Research, 2021, 60, 18530-18539.	3.7	11
18	The structure changes of polypropylene precursor film with different die draw ratio during annealing. Polymer, 2020, 208, 122958.	3.8	9

#	Article	IF	CITATIONS
19	Effect of annealing on the microvoid formation and evolution during biaxial stretching of \hat{l}^2 nucleated isotactic polypropylene. Polymer-Plastics Technology and Materials, 2020, 59, 1595-1607.	1.3	О
20	Enhancing the Chlorine Stability and Antifouling Properties of Thin-Film Composite Reverse Osmosis Membranes via Surface Grafting <i>L</i> -Arginine-Functionalized Polyvinyl Alcohol. Industrial & Engineering Chemistry Research, 2020, 59, 10882-10893.	3.7	19
21	Three-dimensional crystal structure evolution and micropore formation of \hat{l}^2 -iPP during biaxial stretching. Polymer, 2020, 196, 122471.	3.8	14
22	The Influence of Multiple Stimulations on the Unusual Delamination Phenomenon of a Li-Ion Battery Separator Prepared by a Wet Process. Industrial & Engineering Chemistry Research, 2020, 59, 4568-4579.	3.7	11
23	The compression behavior, microstructure evolution and properties variation of three kinds of commercial battery separators under compression load. Journal of Power Sources, 2020, 451, 227819.	7.8	37
24	Solution-Processable and Patternable Poly(<i>o</i> methoxyaniline)-Based Nanocomposite Film for Large-Area Electrochromic Display with Large Optical Modulation and Ultrafast Response Speed. Journal of Physical Chemistry C, 2020, 124, 10898-10906.	3.1	14
25	Effect of temperature on compression behavior of polypropylene separator used for Lithium-ion battery. Journal of Power Sources, 2020, 466, 228300.	7.8	41
26	Influence of comonomer distribution on crystallization kinetics and performance of polyethylene of raised temperature resistance. Polymer International, 2019, 68, 1748-1758.	3.1	5
27	The effect of microstructure on the toughness of polypropylene random copolymer. Polymer-Plastics Technology and Materials, 2019, 58, 1521-1534.	1.3	2
28	Pore formation and evolution mechanism during biaxial stretching of \hat{I}^2 -iPP used for lithium-ion batteries separator. Materials and Design, 2019, 179, 107880.	7.0	37
29	Patterned Flexible Electrochromic Device Based on Monodisperse Silica/Polyaniline Core/Shell Nanospheres. Journal of the Electrochemical Society, 2019, 166, H343-H350.	2.9	32
30	Effect of PPR on the pore formation behavior and pore performances of \hat{l}^2 -iPP microporous membrane used for Lithium-ion battery separator. Journal of Polymer Research, 2019, 26, 1.	2.4	9
31	Effect of annealing on microstructure and mechanical properties of polypropylene random copolymer. Soft Materials, 2019, 17, 1-13.	1.7	7
32	Probing influences of support layer on the morphology of polyamide selective layer of thin film composite membrane. Journal of Membrane Science, 2018, 556, 374-383.	8.2	101
33	Effect of surfactant on morphology and pore size of polysulfone membrane. Journal of Polymer Research, 2018, 25, 1.	2.4	14
34	Effect of Fumed SiO2 on Pore Formation Mechanism and Various Performances of Î ² -iPP Microporous Membrane Used for Lithium-ion Battery Separator. Chinese Journal of Polymer Science (English) Tj ETQqO 0 0 rgE	BT (Os verloo	
35	Influences of Compression on the Mechanical Behavior and Electrochemical Performances of Separators for Lithium Ion Batteries. Industrial & Engineering Chemistry Research, 2018, 57, 17142-17151.	3.7	29
36	Effect of high molecular weight on pore formation and various properties of microporous membrane used for lithium-ion battery separator. Journal of Polymer Research, 2018, 25, 1.	2.4	8

#	Article	IF	CITATIONS
37	Influence of <scp>l</scp> -lysine on the permeation and antifouling performance of polyamide thin film composite reverse osmosis membranes. RSC Advances, 2018, 8, 25236-25247.	3.6	43
38	Impact of different die draw ratio on crystalline and oriented properties of polypropylene cast films and annealed films. Journal of Polymer Research, 2018, 25, 1.		8
39	Deformation and pore formation mechanism of \hat{l}^2 nucleated polypropylene with different supermolecular structures. European Polymer Journal, 2017, 91, 134-148.	5.4	26
40	Investigation of deformation and pore formation in isotactic polypropylene containing active nano-CaCO ₃ . Polymer International, 2017, 66, 1498-1509.	3.1	9
41	Deformation and pore formation mechanism under tensile loading in isotactic polypropylene. Polymer International, 2017, 66, 1129-1140.	3.1	16
42	Influence of oriented βâ€lamellae on deformation and pore formation in βâ€nucleated polypropylene. Journal of Polymer Science, Part B: Polymer Physics, 2017, 55, 1745-1759.	2.1	15
43	Influence of lamellar structure on the stress–strain behavior of β nucleated polypropylene under tensile loading at elevated temperatures. RSC Advances, 2015, 5, 43496-43507.	3.6	18
44	Investigation on the dynamic crystallization and melting behavior of <i>β</i> àê€nucleated isotactic polypropylene with different stereoâ€defect distributionâ€"the role of dualâ€selective <i>β</i> àênucleation agent. Polymers for Advanced Technologies, 2014, 25, 97-107.	3.2	39
45	Investigation on double yielding behavior under tensile loading in isotactic polypropylene. Materials & Design, 2014, 60, 153-163.	5.1	26
46	Understanding in the morphology and tensile behavior of isotactic polypropylene cast films with different stereo-defect distribution. Journal of Polymer Research, 2014, 21, 1.	2.4	14
47	Influence of annealing on stress–strain behaviors and performances of β nucleated polypropylene stretched membranes. Journal of Polymer Research, 2014, 21, 1.	2.4	10
48	Phase separation in a PSf/DMF/water system: a proposed mechanism for macrovoid formation. RSC Advances, 2014, 4, 42391-42402.	3.6	24
49	Pore formation mechanism of \hat{l}^2 nucleated polypropylene stretched membranes. RSC Advances, 2014, 4, 36689-36701.	3.6	69
50	Influence of lamellar structure on double yield behavior and pore size distribution in \hat{I}^2 nucleated polypropylene stretched membranes. RSC Advances, 2014, 4, 43012-43023.	3.6	44