
Eric E Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4536932/publications.pdf Version: 2024-02-01

FDIC F 7HANC

#	Article	IF	CITATIONS
1	A highland-adaptation mutation of the Epas1 protein increases its stability and disrupts the circadian clock in the plateau pika. Cell Reports, 2022, 39, 110816.	2.9	8
2	Identification of PCBP1 as a Novel Modulator of Mammalian Circadian Clock. Frontiers in Genetics, 2021, 12, 656571.	1.1	4
3	Chemical perturbations reveal that RUVBL2 regulates the circadian phase in mammals. Science Translational Medicine, 2020, 12, .	5.8	25
4	A microfluidic approach for experimentally modelling the intercellular coupling system of a mammalian circadian clock at single-cell level. Lab on A Chip, 2020, 20, 1204-1211.	3.1	7
5	Go Human! Circadian translational medicine has come of age. Brain Science Advances, 2020, 6, 69-70.	0.3	2
6	Identification of entacapone as a chemical inhibitor of FTO mediating metabolic regulation through FOXO1. Science Translational Medicine, 2019, 11, .	5.8	201
7	Diurnal oscillations of endogenous H2O2 sustained by p66Shc regulate circadian clocks. Nature Cell Biology, 2019, 21, 1553-1564.	4.6	79
8	The MiR-135b–BMAL1–YY1 loop disturbs pancreatic clockwork to promote tumourigenesis and chemoresistance. Cell Death and Disease, 2018, 9, 149.	2.7	47
9	Long-term in vivo recording of circadian rhythms in brains of freely moving mice. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 4276-4281.	3.3	59
10	In Vivo Monitoring of Circadian Clock Gene Expression in the Mouse Suprachiasmatic Nucleus Using Fluorescence Reporters. Journal of Visualized Experiments, 2018, , .	0.2	3
11	Methylation-mediated miR-155-FAM133A axis contributes to the attenuated invasion and migration of IDH mutant gliomas. Cancer Letters, 2018, 432, 93-102.	3.2	26
12	Pyrrolidine dithiocarbamate sensitizes U251 brain glioma cells to temozolomide via downregulation of MGMT and BCLâ€XL. Oncology Letters, 2017, 14, 5135-5144.	0.8	2
13	BMI1 and MEL18 Promote Colitis-Associated Cancer inÂMiceÂviaÂREG3B and STAT3. Gastroenterology, 2017, 153, 1607-1620.	0.6	33
14	Guidelines for Genome-Scale Analysis of Biological Rhythms. Journal of Biological Rhythms, 2017, 32, 380-393.	1.4	237
15	Reciprocal Regulation between the Circadian Clock and Hypoxia Signaling at the Genome Level in Mammals. Cell Metabolism, 2017, 25, 73-85.	7.2	215
16	Phosphorylation Regulating the Ratio of Intracellular CRY1 Protein Determines the Circadian Period. Frontiers in Neurology, 2016, 7, 159.	1.1	15
17	Downregulation of HIF-1a sensitizes U251 glioma cells to the temozolomide (TMZ) treatment. Experimental Cell Research, 2016, 343, 148-158.	1.2	34
18	BMAL1 regulates transcription initiation and activates circadian clock gene expression in mammals. Biochemical and Biophysical Research Communications, 2016, 473, 1019-1025.	1.0	10

Eric E Zhang

#	Article	IF	CITATIONS
19	Orexin signaling regulates both the hippocampal clock and the circadian oscillation of Alzheimer's disease-risk genes. Scientific Reports, 2016, 6, 36035.	1.6	53
20	The ratio of intracellular CRY proteins determines the clock period length. Biochemical and Biophysical Research Communications, 2016, 472, 531-538.	1.0	22
21	The circadian clock gene Bmal1 acts as a potential anti-oncogene in pancreatic cancer by activating the p53 tumor suppressor pathway. Cancer Letters, 2016, 371, 314-325.	3.2	124
22	Visualizing the Ensemble Structures of Protein Complexes Using Chemical Cross-Linking Coupled with Mass Spectrometry. Biophysics Reports, 2015, 1, 127-138.	0.2	26
23	Editorial: Therapeutic implications of circadian rhythms. Frontiers in Pharmacology, 2015, 6, 175.	1.6	2
24	Cryptochrome mediates circadian regulation of cAMP signaling and hepatic gluconeogenesis. Nature Medicine, 2010, 16, 1152-1156.	15.2	465
25	Clocks not winding down: unravelling circadian networks. Nature Reviews Molecular Cell Biology, 2010, 11, 764-776.	16.1	394
26	Emergence of Noise-Induced Oscillations in the Central Circadian Pacemaker. PLoS Biology, 2010, 8, e1000513.	2.6	172
27	High-Throughput Chemical Screen Identifies a Novel Potent Modulator of Cellular Circadian Rhythms and Reveals CKIα as a Clock Regulatory Kinase. PLoS Biology, 2010, 8, e1000559.	2.6	216
28	A Genome-wide RNAi Screen for Modifiers of the Circadian Clock in Human Cells. Cell, 2009, 139, 199-210.	13.5	437
29	Shp2 acts downstream of SDF-1α/CXCR4 in guiding granule cell migration during cerebellar development. Developmental Biology, 2009, 334, 276-284.	0.9	35
30	Development of Diabesity in Mice with Neuronal Deletion of Shp2 Tyrosine Phosphatase. American Journal of Pathology, 2008, 172, 1312-1324.	1.9	63
31	Redundant Function of REV-ERBα and β and Non-Essential Role for Bmal1 Cycling in Transcriptional Regulation of Intracellular Circadian Rhythms. PLoS Genetics, 2008, 4, e1000023.	1.5	347
32	Bud specific N-sulfation of heparan sulfate regulates <i>Shp2</i> -dependent FGF signaling during lacrimal gland induction. Development (Cambridge), 2008, 135, 301-310.	1.2	91
33	Deletion of Shp2 in the Brain Leads to Defective Proliferation and Differentiation in Neural Stem Cells and Early Postnatal Lethality. Molecular and Cellular Biology, 2007, 27, 6706-6717.	1.1	124
34	Intercellular Coupling Confers Robustness against Mutations in the SCN Circadian Clock Network. Cell, 2007, 129, 605-616.	13.5	676
35	Shp2 Is Dispensable in the Formation and Maintenance of the Neuromuscular Junction. NeuroSignals, 2006, 15, 53-63.	0.5	24
36	Concerted Functions of Gab1 and Shp2 in Liver Regeneration and Hepatoprotection. Molecular and Cellular Biology, 2006, 26, 4664-4674.	1.1	106

Eric E Zhang

#	Article	IF	CITATIONS
37	Conditional Deletion of Shp2 Tyrosine Phosphatase in Thymocytes Suppresses Both Pre-TCR and TCR Signals. Journal of Immunology, 2006, 177, 5990-5996.	0.4	70
38	Conditional Deletion of Shp2 in the Mammary Gland Leads to Impaired Lobulo-alveolar Outgrowth and Attenuated Stat5 Activation. Journal of Biological Chemistry, 2006, 281, 34374-34380.	1.6	56
39	Deletion of Gab1 in the liver leads to enhanced glucose tolerance and improved hepatic insulin action. Nature Medicine, 2005, 11, 567-571.	15.2	79
40	Neuronal Shp2 tyrosine phosphatase controls energy balance and metabolism. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 16064-16069.	3.3	226
41	Identification of Shp-2 as a Stat5A Phosphatase. Journal of Biological Chemistry, 2003, 278, 16520-16527.	1.6	106