List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4536888/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	An updated critical state model by incorporating inertial effects for granular material in solid–fluid transition regime. Granular Matter, 2022, 24, 1.	2.2	5
2	Numerical study of waves generated during iceberg calving in sliding mode. Ocean Engineering, 2022, 246, 110622.	4.3	1
3	Characteristics of iceberg calving-generated waves based on three-dimensional SPH simulations. Coastal Engineering, 2022, 173, 104090.	4.0	1
4	Runout and deflection of granular flow past an array of obstacles on a slope. European Journal of Mechanics, B/Fluids, 2022, 94, 37-49.	2.5	4
5	Tandem cavity collapse in a high-speed droplet impinging on a constrained wall. Journal of Fluid Mechanics, 2022, 932, .	3.4	0
6	SPH-ASR study of drop impact on a heated surface with consideration of inclined angle and evaporation. Engineering Analysis With Boundary Elements, 2022, 141, 235-249.	3.7	8
7	A 2D well-balanced, coupled model of water flow, sediment transport, and bed evolution based on unstructured grids with efficient variable storage strategy. International Journal of Sediment Research, 2021, 36, 151-160.	3.5	1
8	Mesoscale analysis of the suction stress characteristic curve for unsaturated granular materials. Particuology, 2021, 56, 183-192.	3.6	1
9	Large-Eddy Simulation of Turbulent Flow over Wavy Wall with Different Wave Steepness. E3S Web of Conferences, 2021, 299, 03012.	0.5	0
10	Numerical Study of Roll Wave Characteristics Based on Navier-Stokes Equations: A Two-Dimensional Simulation. Journal of Engineering Mechanics - ASCE, 2021, 147, .	2.9	4
11	Modeling shallow geological flows on steep terrains using a specific differential transformation. Acta Mechanica, 2021, 232, 2379-2394.	2.1	1
12	Numerical study on near-field characteristics of landslide-generated impulse waves in channel reservoirs. Journal of Hydrology, 2021, 595, 126012.	5.4	6
13	Effects of the spanwise heterogeneity of a three-dimensional wavy wall on momentum and scalar transport. Physics of Fluids, 2021, 33, .	4.0	8
14	A two-layer model for landslide generated impulse wave: Simulation of the 1958 Lituya bay landslide impact wave from generation to long–duration transport. Advances in Water Resources, 2021, 154, 103989.	3.8	4
15	Smoothed particle hydrodynamics with adaptive spatial resolution (SPH-ASR) for free surface flows. Journal of Computational Physics, 2021, 443, 110539.	3.8	30
16	Curved surface effect on high-speed droplet impingement. Journal of Fluid Mechanics, 2021, 909, .	3.4	18
17	10.1063/5.0067485.2., 2021, , .		0
18	Experimental investigation of immersed granular collapse in viscous and inertial regimes. Physics of Fluids, 2021, 33, .	4.0	7

#	Article	IF	CITATIONS
19	Smoothed particle hydrodynamics with adaptive spatial resolution for multiphase flows with large density ratio. Physical Review E, 2021, 104, 055308.	2.1	11
20	Experimental Study on Front Spreading of Lock-Exchange Gravity Current with Long Lock Length. Journal of Engineering Mechanics - ASCE, 2020, 146, 04019113.	2.9	2
21	Numerical simulation of fast granular flow facing obstacles on steep terrains. Journal of Fluids and Structures, 2020, 99, 103162.	3.4	12
22	Numerical study on immersed granular collapse in viscous regime by particle-scale simulation. Physics of Fluids, 2020, 32, .	4.0	22
23	Evolution of Energy in Submerged Granular Column Collapse. Chinese Physics Letters, 2020, 37, 074502.	3.3	3
24	A 2D hydrodynamic model for shallow water flows with significant infiltration losses. Hydrological Processes, 2020, 34, 2263-2280.	2.6	19
25	Grainâ€energy release governs mobility of debris flow due to solid–liquid mass release. Earth Surface Processes and Landforms, 2020, 45, 2912-2926.	2.5	2
26	A two-dimensional layer-averaged numerical model for turbidity currents. Geological Society Special Publication, 2019, 477, 439-454.	1.3	6
27	Waves and Sediment Transport Due to Granular Landslides Impacting Reservoirs. Water Resources Research, 2019, 55, 495-518.	4.2	14
28	A depth-averaged two-phase model for fluvial sediment-laden flows over erodible beds. Advances in Water Resources, 2019, 129, 338-353.	3.8	7
29	Viscous Elastoplastic SPH Model for Long-Distance High-Speed Landslide. International Journal of Computational Methods, 2019, 16, 1846011.	1.3	8
30	Mathematical modeling of shallow-water flows on steep slopes. Journal of Hydrology and Hydromechanics, 2019, 67, 252-259.	2.0	10
31	Approximate Solutions for Ideal Damâ€Break Sedimentâ€Laden Flows on Uniform Slopes. Water Resources Research, 2018, 54, 2731-2748.	4.2	5
32	Characteristics and influencing factors of sediment deposition-scour in the Sanhuhekou-Toudaoguai Reach of the upper Yellow River, China. International Journal of Sediment Research, 2018, 33, 303-312.	3.5	11
33	A depth-averaged two-phase model for debris flows over fixed beds. International Journal of Sediment Research, 2018, 33, 462-477.	3.5	14
34	A depthâ€averaged twoâ€phase model for debris flows over erodible beds. Earth Surface Processes and Landforms, 2018, 43, 817-839.	2.5	45
35	A quasi single-phase model for debris flows and its comparison with a two-phase model. Journal of Mountain Science, 2018, 15, 1071-1089.	2.0	14
36	Shallow Water Hydro-Sediment-Morphodynamic Equations for Fluvial Processes. Journal of Hydraulic Engineering, 2017, 143, .	1.5	32

#	Article	IF	CITATIONS
37	Characterizing vertical migration of <i>Microcystis aeruginosa</i> and conditions for algal bloom development based on a lightâ€driven migration model. Ecological Research, 2017, 32, 961-969.	1.5	11
38	Effect of viscosity on motion of splashing crown in high speed drop impact. Applied Mathematics and Mechanics (English Edition), 2017, 38, 1709-1720.	3.6	0
39	Fluorescent components and spatial patterns of chromophoric dissolved organic matters in Lake Taihu, a large shallow eutrophic lake in China. Environmental Science and Pollution Research, 2016, 23, 23057-23070.	5.3	12
40	Numerical simulation of landslide-generated waves using a soil–water coupling smoothed particle hydrodynamics model. Advances in Water Resources, 2016, 92, 130-141.	3.8	67
41	Adomian Decomposition Method Combined with Padé Approximation and Laplace Transform for Solving a Model of HIV Infection of CD4 ⁺ T Cells. Discrete Dynamics in Nature and Society, 2015, 2015, 1-7.	0.9	5
42	Whole-Process Modeling of Reservoir Turbidity Currents by a Double Layer-Averaged Model. Journal of Hydraulic Engineering, 2015, 141, .	1.5	36
43	Modelling roll waves with shallow water equations and turbulent closure. Journal of Hydraulic Research/De Recherches Hydrauliques, 2015, 53, 161-177.	1.7	38
44	Numerical study of hydrodynamic process in Chaohu Lake. Journal of Hydrodynamics, 2015, 27, 720-729.	3.2	14
45	SPH-Based Simulations for Slope Failure Considering Soil-Rock Interaction. Procedia Engineering, 2015, 102, 1842-1849.	1.2	12
46	A New Energy-Absorbing Device for Motion Suppression in Deep-Sea Floating Platforms. Energies, 2015, 8, 111-132.	3.1	19
47	Coupled flood and sediment transport modelling with adaptive mesh refinement. Science China Technological Sciences, 2015, 58, 1425-1438.	4.0	18
48	On the horizontal distribution of algal-bloom in Chaohu Lake and its formation process. Acta Mechanica Sinica/Lixue Xuebao, 2014, 30, 656-666.	3.4	18
49	Modified asymptotic Adomian decomposition method for solving Boussinesq equation of groundwater flow. Applied Mathematics and Mechanics (English Edition), 2014, 35, 481-488.	3.6	6
50	On semi-convergence of modified HSS iteration methods. Numerical Algorithms, 2013, 64, 507-518.	1.9	15
51	A double layer-averaged model for dam-break flows over mobile bed. Journal of Hydraulic Research/De Recherches Hydrauliques, 2013, 51, 518-534.	1.7	52
52	Dynamic criterion for the formation of surface water-blooms. Theoretical and Applied Mechanics Letters, 2013, 3, 042003.	2.8	2
53	The Characteristics and Estimation of Flow Through a Single Rough-Walled Fracture. Journal of Hydrodynamics, 2012, 24, 315-322.	3.2	11
54	Approximate Engineering Solution for Predicting Groundwater Table Variation During Reservoir Drawdown on the Basis of the Boussinesq Equation. Journal of Hydrologic Engineering - ASCE, 2011, 16, 791-797.	1.9	9

#	Article	IF	CITATIONS
55	Effects of rainfall infiltration on deep slope failure. Science in China Series G: Physics, Mechanics and Astronomy, 2009, 52, 108-114.	0.2	17
56	Numerical study on transient flow in the deep naturally fractured reservoir with high pressure. Science in China Series G: Physics, Mechanics and Astronomy, 2009, 52, 1074-1085.	0.2	3
57	Mixing process in estuaries. Science in China Series A: Mathematics, 1999, 42, 1110-1120.	0.5	7
58	Fluidization Dynamics in an Impinging-jet-driven Bioreactor for Artificial Liver System. Physics of Fluids, 0, , .	4.0	0