Richard Mirin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4536785/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Detecting single infrared photons with 93% system efficiency. Nature Photonics, 2013, 7, 210-214.	15.6	963
2	Strong Loophole-Free Test of Local Realism. Physical Review Letters, 2015, 115, 250402.	2.9	910
3	Observing the Average Trajectories of Single Photons in a Two-Slit Interferometer. Science, 2011, 332, 1170-1173.	6.0	514
4	Demonstration of sub-3 ps temporal resolution with a superconducting nanowire single-photon detector. Nature Photonics, 2020, 14, 250-255.	15.6	285
5	1.3 μm photoluminescence from InGaAs quantum dots on GaAs. Applied Physics Letters, 1995, 67, 3795-3797.	1.5	243
6	Generation of optical coherent-state superpositions by number-resolved photon subtraction from the squeezed vacuum. Physical Review A, 2010, 82, .	1.0	209
7	Heterogeneous integration for on-chip quantum photonic circuits with single quantum dot devices. Nature Communications, 2017, 8, 889.	5.8	185
8	Superconducting nanowire single-photon detectors with 98% system detection efficiency at 1550  nm. Optica, 2020, 7, 1649.	4.8	182
9	Room-temperature continuous-wave operation of 1.54-μm vertical-cavity lasers. IEEE Photonics Technology Letters, 1995, 7, 1225-1227.	1.3	167
10	Photon-efficient quantum key distribution using time–energy entanglement with high-dimensional encoding. New Journal of Physics, 2015, 17, 022002.	1.2	150
11	Single photon source characterization with a superconducting single photon detector. Optics Express, 2005, 13, 10846.	1.7	146
12	Superconducting Optoelectronic Circuits for Neuromorphic Computing. Physical Review Applied, 2017, 7, .	1.5	138
13	Direct generation of three-photon polarization entanglement. Nature Photonics, 2014, 8, 801-807.	15.6	125
14	Low threshold, wafer fused long wavelength vertical cavity lasers. Applied Physics Letters, 1994, 64, 1463-1465.	1.5	121
15	Travelling-wave photodetectors with 172-GHz bandwidth and 76-GHz bandwidth-efficiency product. IEEE Photonics Technology Letters, 1995, 7, 412-414.	1.3	120
16	Kilopixel array of superconducting nanowire single-photon detectors. Optics Express, 2019, 27, 35279.	1.7	116
17	Two-Quantum Many-Body Coherences in Two-Dimensional Fourier-Transform Spectra of Exciton Resonances in Semiconductor Quantum Wells. Physical Review Letters, 2010, 104, 117401.	2.9	115
18	A three-dimensional, polarization-insensitive superconducting nanowire avalanche photodetector. Applied Physics Letters, 2012, 101, .	1.5	114

#	Article	IF	CITATIONS
19	Polarization-dependent optical 2D Fourier transform spectroscopy of semiconductors. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 14227-14232.	3.3	110
20	A near-infrared 64-pixel superconducting nanowire single photon detector array with integrated multiplexed readout. Applied Physics Letters, 2015, 106, .	1.5	110
21	High-efficiency superconducting nanowire single-photon detectors fabricated from MoSi thin-films. Optics Express, 2015, 23, 33792.	1.7	109
22	Photon-number-discriminating detection using a quantum-dot, optically gated, field-effect transistor. Nature Photonics, 2007, 1, 585-588.	15.6	103
23	High quantum-efficiency photon-number-resolving detector for photonic on-chip information processing. Optics Express, 2013, 21, 22657.	1.7	101
24	Quantum teleportation over 100  km of fiber using highly efficient superconducting nanowire single-photon detectors. Optica, 2015, 2, 832.	4.8	100
25	Design and analysis of double-fused 1.55-μm vertical-cavity lasers. IEEE Journal of Quantum Electronics, 1997, 33, 1369-1383.	1.0	87
26	Efficient fiber-coupled single-photon source based on quantum dots in a photonic-crystal waveguide. Optica, 2017, 4, 178.	4.8	87
27	Doubleâ€fused 1.52â€Î¼m verticalâ€cavity lasers. Applied Physics Letters, 1995, 66, 1030-1032.	1.5	81
28	Structural and optical characterization of InAs/InGaAs selfâ€assembled quantum dots grown on (311)BGaAs. Journal of Applied Physics, 1996, 80, 3466-3470.	1.1	77
29	64°C continuous-wave operation of 1.5-μm vertical-cavity laser. IEEE Journal of Selected Topics in Quantum Electronics, 1997, 3, 359-365.	1.9	76
30	Fast lifetime measurements of infrared emitters using a low-jitter superconducting single-photon detector. Applied Physics Letters, 2006, 89, 031109.	1.5	76
31	On-chip, photon-number-resolving, telecommunication-band detectors for scalable photonic information processing. Physical Review A, 2011, 84, .	1.0	75
32	UV superconducting nanowire single-photon detectors with high efficiency, low noise, and 4 K operating temperature. Optics Express, 2017, 25, 26792.	1.7	70
33	Generation of degenerate, factorizable, pulsed squeezed light at telecom wavelengths. Optics Express, 2011, 19, 24434.	1.7	68
34	Single-photon detection in the mid-infrared up to 10 <i>μ</i> m wavelength using tungsten silicide superconducting nanowire detectors. APL Photonics, 2021, 6, .	3.0	68
35	All-silicon light-emitting diodes waveguide-integrated with superconducting single-photon detectors. Applied Physics Letters, 2017, 111, .	1.5	66
36	144 °C operation of 1.3 μm InGaAsP vertical cavity lasers on GaAs substrates. Applied Physics Letters, 19 61, 3095-3097.	⁹⁹² 1.5	65

#	Article	IF	CITATIONS
37	Polarization dependence of semiconductor exciton and biexciton contributions to phase-resolved optical two-dimensional Fourier-transform spectra. Physical Review B, 2009, 79, .	1.1	64
38	High-order temporal coherences ofâ€ chaotic and laser light. Optics Express, 2010, 18, 1430.	1.7	60
39	Ultra-low-noise monolithic mode-locked solid-state laser. Optica, 2016, 3, 995.	4.8	60
40	Multiphoton quantum-state engineering using conditional measurements. Npj Quantum Information, 2019, 5, .	2.8	57
41	Superconducting nanowire single photon detectors fabricated from an amorphous Mo0.75Ge0.25 thin film. Applied Physics Letters, 2014, 105, .	1.5	55
42	Spectral correlation measurements at the Hong-Ou-Mandel interference dip. Physical Review A, 2015, 91, .	1.0	55
43	Quantum frequency conversion of a quantum dot single-photon source on a nanophotonic chip. Optica, 2019, 6, 563.	4.8	55
44	Extraction of Many-Body Configurations from Nonlinear Absorption in Semiconductor Quantum Wells. Physical Review Letters, 2010, 104, 247401.	2.9	54
45	Entanglement-based quantum communication secured by nonlocal dispersion cancellation. Physical Review A, 2014, 90, .	1.0	53
46	High-efficiency WSi superconducting nanowire single-photon detectors operating at 2.5 K. Applied Physics Letters, 2014, 105, .	1.5	53
47	Single-photon detection using a quantum dot optically gated field-effect transistor with high internal quantum efficiency. Applied Physics Letters, 2006, 89, 253505.	1.5	52
48	Quantum-correlated photon pairs generated in a commercial 45  nm complementary metal-oxide semiconductor microelectronic chip. Optica, 2015, 2, 1065.	4.8	52
49	State Readout of a Trapped Ion Qubit Using a Trap-Integrated Superconducting Photon Detector. Physical Review Letters, 2021, 126, 010501.	2.9	52
50	Mid-infrared Laser-Induced Fluorescence with Nanosecond Time Resolution Using a Superconducting Nanowire Single-Photon Detector: New Technology for Molecular Science. Accounts of Chemical Research, 2017, 50, 1400-1409.	7.6	51
51	Superconducting optoelectronic loop neurons. Journal of Applied Physics, 2019, 126, .	1.1	51
52	Superconducting microwire detectors based on WSi with single-photon sensitivity in the near-infrared. Applied Physics Letters, 2020, 116, .	1.5	48
53	Design, fabrication, and metrology of 10 × 100 multi-planar integrated photonic routing manifolds for neural networks. APL Photonics, 2018, 3, .	3.0	46
54	Direct measurement of polarization resolved transition dipole moment in InGaAs/GaAs quantum dots. Applied Physics Letters, 2003, 82, 4552-4554.	1.5	45

#	Article	IF	CITATIONS
55	Fano fluctuations in superconducting-nanowire single-photon detectors. Physical Review B, 2017, 96, .	1.1	44
56	Efficient second harmonic generation in nanophotonic GaAs-on-insulator waveguides. Optics Express, 2020, 28, 9521.	1.7	44
57	Extending single-photon optimized superconducting transition edge sensors beyond the single-photon counting regime. Optics Express, 2012, 20, 23798.	1.7	43
58	Hotspot relaxation dynamics in a current-carrying superconductor. Physical Review B, 2016, 93, .	1.1	43
59	Multi-planar amorphous silicon photonics with compact interplanar couplers, cross talk mitigation, and low crossing loss. APL Photonics, 2017, 2, .	3.0	43
60	High-speed >90% quantum-efficiency p–i–n photodiodes with a resonance wavelength adjustable in the 795–835 nm range. Applied Physics Letters, 1999, 74, 1072-1074.	1.5	42
61	Photon antibunching at high temperature from a single InGaAs/GaAs quantum dot. Applied Physics Letters, 2004, 84, 1260-1262.	1.5	42
62	Ultra-sensitive mid-infrared emission spectrometer with sub-ns temporal resolution. Optics Express, 2018, 26, 14859.	1.7	42
63	Circuit designs for superconducting optoelectronic loop neurons. Journal of Applied Physics, 2018, 124, .	1.1	41
64	Multifunctional integrated photonics in the mid-infrared with suspended AlGaAs on silicon. Optica, 2019, 6, 1246.	4.8	41
65	Third-order antibunching from an imperfect single-photon source. Optics Express, 2014, 22, 3244.	1.7	40
66	UV-sensitive superconducting nanowire single photon detectors for integration in an ion trap. Optics Express, 2017, 25, 8705.	1.7	40
67	Deuterated silicon nitride photonic devices for broadband optical frequency comb generation. Optics Letters, 2018, 43, 1527.	1.7	40
68	Passively mode-locked glass waveguide laser with 14-fs timing jitter. Optics Letters, 2003, 28, 2411.	1.7	39
69	A four-pixel single-photon pulse-position array fabricated from WSi superconducting nanowire single-photon detectors. Applied Physics Letters, 2014, 104, 051115.	1.5	39
70	Device-independent randomness expansion with entangled photons. Nature Physics, 2021, 17, 452-456.	6.5	39
71	Infrared frequency comb generation and spectroscopy with suspended silicon nanophotonic waveguides. Optica, 2019, 6, 1269.	4.8	39
72	Dark pulse quantum dot diode laser. Optics Express, 2010, 18, 13385.	1.7	38

#	Article	IF	CITATIONS
73	High bandwidth-efficiency resonant cavity enhanced Schottky photodiodes for 800–850 nm wavelength operation. Applied Physics Letters, 1998, 72, 2727-2729.	1.5	37
74	Storage of hyperentanglement in a solid-state quantum memory. Optica, 2015, 2, 279.	4.8	37
75	Versatile silicon-waveguide supercontinuum for coherent mid-infrared spectroscopy. APL Photonics, 2018, 3, .	3.0	37
76	Photoluminescence study of strainâ€induced quantum well dots by wetâ€etching technique. Applied Physics Letters, 1992, 61, 300-302.	1.5	36
77	Modeâ€locked GaAs vertical cavity surface emitting lasers. Applied Physics Letters, 1992, 60, 677-679.	1.5	36
78	Separating Homogeneous and Inhomogeneous Line Widths of Heavy- and Light-Hole Excitons in Weakly Disordered Semiconductor Quantum Wells. Journal of Physical Chemistry B, 2011, 115, 5365-5371.	1.2	36
79	Integrated transition edge sensors on titanium in-diffused lithium niobate waveguides. APL Photonics, 2019, 4, 056103.	3.0	36
80	Bimodal size distribution of self-assembledInxGa1â^'xAsquantum dots. Physical Review B, 2002, 66, .	1.1	34
81	Laterally oxidized long wavelength cw verticalâ€cavity lasers. Applied Physics Letters, 1996, 69, 471-472.	1.5	32
82	High resolution, high collection efficiency in numerical aperture increasing lens microscopy of individual quantum dots. Applied Physics Letters, 2005, 87, 071905.	1.5	32
83	Quasiparticle recombination in hotspots in superconducting current-carrying nanowires. Physical Review B, 2015, 92, .	1.1	32
84	Signatures of many-particle correlations in two-dimensional Fourier-transform spectra of semiconductor nanostructures. Solid State Communications, 2007, 142, 154-158.	0.9	31
85	Nanosecond-scale timing jitter for single photon detection in transition edge sensors. Applied Physics Letters, 2013, 102, 231117.	1.5	31
86	Room-temperature-deposited dielectrics and superconductors for integrated photonics. Optics Express, 2017, 25, 10322.	1.7	31
87	Temporal Multimode Storage of Entangled Photon Pairs. Physical Review Letters, 2016, 117, 240506.	2.9	30
88	Submicrometer photoresponse mapping of nanowire superconducting single-photon detectors. Applied Physics Letters, 2007, 91, .	1.5	29
89	Systematic observation of strainâ€induced lateral quantum confinement in GaAs quantum well wires prepared by chemical dry etching. Applied Physics Letters, 1991, 59, 1875-1877.	1.5	28
90	Single-photon source characterization with twin infrared-sensitive superconducting single-photon detectors. Journal of Applied Physics, 2007, 101, 103104.	1.1	28

#	Article	IF	CITATIONS
91	Low-loss, high-bandwidth fiber-to-chip coupling using capped adiabatic tapered fibers. APL Photonics, 2020, 5, .	3.0	28
92	Scalable multiphoton quantum metrology with neither pre- nor post-selected measurements. Applied Physics Reviews, 2021, 8, .	5.5	27
93	Optically pumped all-epitaxial wafer-fused 1.52 µm vertical-cavity lasers. Electronics Letters, 1994, 30, 704-706.	0.5	25
94	Optical constants of (Al0.98Ga0.02)xOy native oxides. Applied Physics Letters, 1998, 73, 3512-3514.	1.5	25
95	High power generation of THz from 1550-nm photoconductive emitters. Optics Express, 2018, 26, 14472.	1.7	25
96	Enhanced light extraction from circular Bragg grating coupled microcavities. Applied Physics Letters, 2006, 89, 033105.	1.5	24
97	Effect of the confinement-layer composition on the internal quantum efficiency and modulation response of quantum-well lasers. IEEE Photonics Technology Letters, 1992, 4, 832-834.	1.3	23
98	Overgrowth of InGaAs quantum dots formed by alternating molecular beam epitaxy. Journal of Crystal Growth, 1997, 175-176, 696-701.	0.7	23
99	Quantum dot lasers—History and future prospects. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2021, 39, .	0.9	22
100	Effects of As4 flux on reflection high-energy electron diffraction oscillations during growth of GaAs at low temperatures. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 1994, 12, 1050.	1.6	21
101	Heralded amplification of photonic qubits. Optics Express, 2016, 24, 125.	1.7	21
102	High-resolution spectral hole burning in InGaAs-GaAs quantum dots. Applied Physics Letters, 2006, 88, 061114.	1.5	20
103	Investigation of electronic coupling in semiconductor double quantum wells using coherent optical two-dimensional Fourier transform spectroscopy. Solid State Communications, 2009, 149, 361-366.	0.9	20
104	Optimization of photoluminescence from W centers in silicon-on-insulator. Optics Express, 2020, 28, 16057.	1.7	19
105	InGaAs quantum well wires grown on patterned GaAs substrates. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1992, 10, 697-700.	0.9	18
106	Passively mode-locked waveguide laser with low residual jitter. IEEE Photonics Technology Letters, 2002, 14, 1351-1353.	1.3	18
107	Electronic Enhancement of the Exciton Coherence Time in Charged Quantum Dots. Physical Review Letters, 2016, 116, 037402.	2.9	18
108	Experimental investigation of the detection mechanism in WSi nanowire superconducting single photon detectors. Applied Physics Letters, 2016, 109, .	1.5	18

#	Article	IF	CITATIONS
109	Low temperature limits to molecular beam epitaxy of GaAs. Applied Physics Letters, 1994, 65, 2335-2337.	1.5	16
110	High-speed high-efficiency large-area resonant cavity enhanced p-i-n photodiodes for multimode fiber communications. IEEE Photonics Technology Letters, 2001, 13, 1349-1351.	1.3	16
111	Photon antibunching from a single lithographically defined InGaAs/GaAs quantum dot. Optics Express, 2011, 19, 4182.	1.7	16
112	III-V photonic integrated circuit with waveguide-coupled light-emitting diodes and WSi superconducting single-photon detectors. Applied Physics Letters, 2019, 115, 081105.	1.5	16
113	Measuring intensity correlations with a two-element superconducting nanowire single-photon detector. Physical Review A, 2008, 78, .	1.0	15
114	Materials Development for High Efficiency Superconducting Nanowire Single-Photon Detectors. Materials Research Society Symposia Proceedings, 2015, 1807, 1-6.	0.1	15
115	Quantum phase modulation with acoustic cavities and quantum dots. Optica, 2022, 9, 501.	4.8	15
116	Femtosecond periodic gain vertical-cavity lasers. IEEE Photonics Technology Letters, 1993, 5, 23-24.	1.3	14
117	Operational Analysis of a Quantum Dot Optically Gated Field-Effect Transistor as a Single-Photon Detector. IEEE Journal of Selected Topics in Quantum Electronics, 2007, 13, 967-977.	1.9	14
118	THz Superradiance from a GaAs: ErAs Quantum Dot Array at Room Temperature. Applied Sciences (Switzerland), 2019, 9, 3014.	1.3	14
119	Mo _x Si _{1â^'} _x a versatile material for nanowire to microwire single-photon detectors from UV to near IR. Superconductor Science and Technology, 2021, 34, 054001.	1.8	14
120	Transverse-mode and polarisation characteristics of double-fused 1.52 [micro sign]m vertical-cavity lasers. Electronics Letters, 1995, 31, 653.	0.5	13
121	Wavelength Bistability in Two-Section Mode-Locked Quantum-Dot Diode Lasers. IEEE Photonics Technology Letters, 2007, 19, 804-806.	1.3	13
122	Arrays of WSi Superconducting Nanowire Single Photon Detectors for Deep-Space Optical Communications. , 2015, , .		13
123	Athermal avalanche in bilayer superconducting nanowire single-photon detectors. Applied Physics Letters, 2016, 108, .	1.5	13
124	Abrupt dependence of ultrafast <i>extrinsic</i> photoconductivity on Er fraction in GaAs:Er. Applied Physics Letters, 2017, 111, .	1.5	13
125	Compressive characterization of telecom photon pairs in the spatial and spectral degrees of freedom. Optica, 2018, 5, 1418.	4.8	13
126	Broadband polarization insensitivity and high detection efficiency in high-fill-factor superconducting microwire single-photon detectors. APL Photonics, 2022, 7, .	3.0	13

#	Article	IF	CITATIONS
127	Analysis of photoconductive gain as it applies to single-photon detection. Journal of Applied Physics, 2010, 107, 063110.	1.1	12
128	Design of Superconducting Optoelectronic Networks for Neuromorphic Computing. , 2018, , .		12
129	Microring resonator-coupled photoluminescence from silicon W centers. JPhys Photonics, 2020, 2, 045001.	2.2	12
130	Observation of increased photoluminescence decay time in strainâ€induced quantumâ€well dots. Applied Physics Letters, 1993, 62, 1376-1378.	1.5	11
131	Characterization of InGaAs quantum dot lasers with a single quantum dot layer as an active region. Physica E: Low-Dimensional Systems and Nanostructures, 1998, 2, 738-742.	1.3	11
132	Directed self-assembly of InAs quantum dots on nano-oxide templates. Applied Physics Letters, 2011, 98, 141112.	1.5	11
133	Delayed formation of coherence in the emission dynamics of high-Q nanolasers. Optica, 2018, 5, 395.	4.8	11
134	Large-Area 64-pixel Array of WSi Superconducting Nanowire Single Photon Detectors. , 2017, , .		11
135	Single-scan acquisition of multiple multidimensional spectra. Optica, 2019, 6, 735.	4.8	11
136	Electrically pumped mode-locked vertical-cavity semiconductor lasers. Optics Letters, 1993, 18, 1937.	1.7	10
137	On-chip polarization rotator for type I second harmonic generation. APL Photonics, 2019, 4, 126105.	3.0	10
138	Exceeding 95% system efficiency within the telecom C-band in superconducting nanowire single photon detectors. , 2019, , .		10
139	Morphology and optical properties of strained InGaAs quantum wires. Journal of Crystal Growth, 1993, 127, 881-886.	0.7	9
140	Narrow photoluminescence linewidths from ensembles of self-assembled InGaAs quantum dots. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 2000, 18, 1510.	1.6	9
141	Single-electron transistor spectroscopy of InGaAs self-assembled quantum dots. Physica E: Low-Dimensional Systems and Nanostructures, 2004, 21, 501-505.	1.3	9
142	Quantum Dot Single Photon Sources Studied with Superconducting Single Photon Detectors. IEEE Journal of Selected Topics in Quantum Electronics, 2006, 12, 1255-1268.	1.9	9
143	Temperature dependence of the single-photon sensitivity of a quantum dot, optically gated, field-effect transistor. Journal of Applied Physics, 2013, 114, .	1.1	9
144	Towards single-photon spectroscopy in the mid-infrared using superconducting nanowire		9

* single-photon detectors. , 2019, , .

#	Article	IF	CITATIONS
145	Compound semiconductor oxide antireflection coatings. Journal of Applied Physics, 2000, 87, 7169-7175.	1.1	8
146	Lateral coupling of InxGa1â^'xAsâ^•GaAs quantum dots investigated using differential transmission spectroscopy. Physical Review B, 2004, 70, .	1.1	8
147	Designing high electron mobility transistor heterostructures with quantum dots for efficient, number-resolving photon detection. Journal of Vacuum Science & Technology B, 2008, 26, 1174.	1.3	8
148	Wavelength Bistability and Switching in Two-Section Quantum-Dot Diode Lasers. IEEE Journal of Quantum Electronics, 2010, 46, 951-958.	1.0	8
149	Time-resolved photoluminescence of lithographically defined quantum dots fabricated by electron beam lithography and wet chemical etching. Journal of Applied Physics, 2011, 109, 123112.	1.1	8
150	Achieving 98% system efficiency at 1550 nm in superconducting nanowire single photon detectors. , 2019, , .		8
151	Tungsten Silicide Superconducting Nanowire Single-Photon Test Structures Fabricated Using Optical Lithography. IEEE Transactions on Applied Superconductivity, 2015, 25, 1-5.	1.1	7
152	Short-wave infrared compressive imaging of single photons. Optics Express, 2018, 26, 15519.	1.7	7
153	Laser-lithographically written micron-wide superconducting nanowire single-photon detectors. Superconductor Science and Technology, 2022, 35, 055005.	1.8	7
154	Formation of InAs/GaAs quantum dots by dewetting during cooling. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 2002, 20, 1489.	1.6	6
155	Compact solid-state waveguide lasers. IEEE Circuits and Devices: the Magazine of Electronic and Photonic Systems, 2003, 19, 18-27.	0.8	6
156	Infrared wavelength-dependent optical characterization of NbN nanowire superconducting single-photon detectors. Journal of Modern Optics, 2009, 56, 358-363.	0.6	6
157	Homogeneous linewidth narrowing of the charged exciton via nuclear spin screening in an InAs/GaAs quantum dot ensemble. Physical Review B, 2014, 90, .	1.1	6
158	Observation of quasi-periodic facet formation during high temperature growth of AlAs and AlAs/GaAs superlattices. Journal of Crystal Growth, 1993, 127, 908-912.	0.7	5
159	Fabrication and characteristics of double-fused vertical-cavity lasers. Optical and Quantum Electronics, 1996, 28, 475-485.	1.5	5
160	Single-Photon and Photon-Number-Resolving Detectors. IEEE Photonics Journal, 2012, 4, 629-632.	1.0	5
161	Integrated superconducting nanowire single-photon detectors on titanium in-diffused lithium niobate waveguides. JPhys Photonics, 2021, 3, 034022.	2.2	5
162	GaAs buffer layer morphology and lateral distributions of InGaAs quantum dots. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 2005, 23, 1226.	1.6	4

#	Article	IF	CITATIONS
163	Quadrature demodulation of a quantum dot optical response to faint light fields. Optica, 2016, 3, 1397.	4.8	4
164	Investigation of the Shape of InGaAs/GaAs Quantum Dots. Materials Research Society Symposia Proceedings, 2002, 737, 120.	0.1	3
165	High-Resolution Spectroscopic Measurements of InGaAs/GaAs Self-Assembled Quantum Dots. ECS Transactions, 2006, 2, 15-25.	0.3	3
166	Fast lifetime measurements of infrared emitters with low-jitter superconducting single photon detectors. , 2006, , .		3
167	Intensity dynamics in a waveguide array laser. Optics Communications, 2011, 284, 971-978.	1.0	3
168	Monolithic device for modelocking and stabilization of frequency combs. Optics Express, 2015, 23, 33038.	1.7	3
169	Transverse-mode & polarization characteristics of double-fused 1.52 μm vertical-cavity lasers. III-Vs Review, 1996, 9, 36-40.	0.1	2
170	Time-correlated single-photon counting with superconducting single-photon detectors. , 2006, , .		2
171	Single-photon detection using a semiconductor quantum dot, optically gated, field-effect transistor. , 2006, , .		2
172	Single photon source characterization with a superconducting single photon detector. , 2006, , .		2
173	Photon-number discrimination using a semiconductor quantum dot, optically gated, field-effect transistor. Proceedings of SPIE, 2007, , .	0.8	2
174	GaAsâ^•AlOx micropillar fabrication for small mode volume photon sources. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2010, 28, 157-162.	0.6	2
175	Observing the average trajectories of single photons in a two-slit interferometer. , 2011, , .		2
176	Microresonator-enhanced, Waveguide-coupled Emission from Silicon Defect Centers for Superconducting Optoelectronic Networks. , 2020, , .		2
177	Low threshold, electrically injected InGaAsP (1.3 mu m) vertical cavity lasers on GaAs substrates. IEEE Transactions on Electron Devices, 1993, 40, 2119-2120.	1.6	1
178	Multimode lasing at room temperature from InGaAs/GaAs quantum dot lasers. , 2001, , .		1
179	Recent advances in solid-state single photon detectors. , 2006, , .		1
180	Reducing the oscillator strength in semiconductor quantum dots with a lateral electric field. , 2008, , .		1

#	Article	IF	CITATIONS
181	Nano-optical studies of superconducting nanowire single-photon detectors. Proceedings of SPIE, 2009, , .	0.8	1
182	Quantum interference control of photocurrent injection inÂEr-doped GaAs. Applied Physics B: Lasers and Optics, 2010, 98, 333-336.	1.1	1
183	Ultrafast optical properties of lithographically defined quantum dot amplifiers. Applied Physics Letters, 2014, 104, 061106.	1.5	1
184	Hotspot Dynamics in Current Carrying WSi Superconducting Nanowires. , 2014, , .		1
185	A Hybrid III-V-Graphene Device for Modelocking and Noise Suppression in a Frequency Comb. , 2015, , .		1
186	Impedance-matched differential SNSPDs for practical photon counting with sub-10 ps timing jitter. , 2021, , .		1
187	Superconducting Nanowire Single Photon Detectors with High System Detection Efficiency at Telecom Wavelengths. , 2013, , .		1
188	Temporal Magnification with Picosecond Resolution at the Single-photon Level. , 2016, , .		1
189	Photon-Efficient High-Dimensional Quantum Key Distribution. , 2014, , .		1
190	High-efficiency, low noise UV superconducting nanowire single-photon detectors operating above 4 K. , 2017, , .		1
191	A short-wave infrared single photon camera. , 2017, , .		1
192	Ultrafast resonant-cavity-enhanced Schottky photodiodes. , 1997, 3290, 41.		0
193	High-Speed Resonant Cavity Enhanced Photodiodes. Optics and Photonics News, 1999, 10, 13.	0.4	0
194	Carrier dynamics and homogeneous broadening in quantum dot waveguides. , 2005, , .		0
195	HEMT Amplified SET Measurements of Individual InGaAs Quantum Dots. AIP Conference Proceedings, 2005, , .	0.3	Ο
196	Enhanced light extraction from circular Bragg grating coupled microcavities. , 2006, , .		0
197	Temperature-dependent saturation fluence in InGaAs quantum dots based on direct absorption measurements. , 2006, , .		0
198	Photon-number-resolving capabilities of a semiconductor quantum dot, optically gated, field-effect transistor. , 2007, , .		0

#	Article	IF	CITATIONS
199	Bistable lasing wavelength in a mode-locked two-section quantum-dot diode laser. , 2007, , .		0
200	Dark pulse diode laser. , 2008, , .		0
201	Topography of epitaxial GaAs surfaces for growth. Journal of Vacuum Science & Technology B, 2009, 27, 1072.	1.3	0
202	Optical and near-infrared photon detection with superconducting devices. , 2011, , .		0
203	High-efficiency Bragg grating enhanced on-chip photon-number-resolving detectors. , 2013, , .		0
204	Progress and prospects for high efficiency and gigacount per second detectors for quantum repeaters using superconducting nanowire detectors. , 2014, , .		0
205	Gain and Loss in Active Waveguides Based on Lithographically Defined Quantum Dots. IEEE Photonics Technology Letters, 2014, 26, 1283-1286.	1.3	0
206	Attosecond Timing Jitter Characterization of Mode-locked Lasers Using Optical Heterodyne Techniques. , 2015, , .		0
207	Polarization-Insensitive Superconducting Nanowire Single-Photon Detectors. , 2015, , .		0
208	Quantum Teleportation over 100 km of Fiber using MoSi Superconducting Nanowire Single-Photon Detectors. , 2015, , .		0
209	Recent advances in superconducting nanowire single photon detectors for single-photon imaging. Proceedings of SPIE, 2016, , .	0.8	0
210	Fabricating WSi based superconducting microwire single photon detectors with laser lithography. , 2021, , .		0
211	Growth, characterization, and applications of self-assembled InGaAs quantum dots. , 2000, , 183-231.		0
212	Improving squeezing purity from a KNbO <inf>3</inf> crystal by temperature tuning. , 2008, , .		0
213	Many-body two-quantum coherences in 2D Fourier-Transform spectra of semiconductors. , 2010, , .		0
214	Bistable wavelength switching in a two-section quantum-dot mode-locked diode laser. , 2010, , .		0
215	Exotic Behavior in Quantum Dot Mode-Locked Lasers: Dark Pulses and Bistability. , 2012, , 23-48.		0

#	Article	IF	CITATIONS
217	Operating Temperature Dependence of QDOGFET Single-Photon Detectors. , 2013, , .		0
218	High-efficiency superconducting nanowire single photon detectors based on amorphous Mo0.75Ge0.25. , 2014, , .		0
219	High-Speed Resonant Cavity Enhanced Photodiodes with Near-Unity Quantum Efficiency. , 1999, , .		0
220	Charged Exciton Linewidth Narrowing via Nuclear Spin Screening in an InAs QD Ensemble. , 2015, , .		0
221	Large-Area Arrays of WSi Superconducting Nanowire Single Photon Detectors. , 2015, , .		0
222	High-efficiency UV Superconducting Nanowire Single-photon Detectors from Amorphous MoSi. , 2016,		0
223	Electronic Control of Exciton Coherence in a Charged Quantum Dot Photonic Waveguide. , 2016, , .		0
224	Bandwidth-enhanced Superconducting Nanowire Single Photon Detectors for Telecom Wavelengths. , 2017, , .		0