
Michael D Burkart

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4536693/publications.pdf Version: 2024-02-01

MICHAEL D RUDKADT

#	Article	IF	CITATIONS
1	The phosphopantetheinyl transferases: catalysis of a post-translational modification crucial for life. Natural Product Reports, 2014, 31, 61-108.	10.3	283
2	Opportunities and Challenges for Catalysis in Carbon Dioxide Utilization. ACS Catalysis, 2019, 9, 7937-7956.	11.2	271
3	Explorations of catalytic domains in non-ribosomal peptide synthetase enzymology. Natural Product Reports, 2012, 29, 1074.	10.3	255
4	Azithromycin Synergizes with Cationic Antimicrobial Peptides to Exert Bactericidal and Therapeutic Activity Against Highly Multidrug-Resistant Gram-Negative Bacterial Pathogens. EBioMedicine, 2015, 2, 690-698.	6.1	217
5	Trapping the dynamic acyl carrier protein in fatty acid biosynthesis. Nature, 2014, 505, 427-431.	27.8	216
6	Unraveling the Structure and Function of Melanin through Synthesis. Journal of the American Chemical Society, 2021, 143, 2622-2637.	13.7	174
7	Fatty acid biosynthesis revisited: structure elucidation and metabolic engineering. Molecular BioSystems, 2015, 11, 38-59.	2.9	158
8	Charting the Complexity of the Marine Microbiome through Single-Cell Genomics. Cell, 2019, 179, 1623-1635.e11.	28.9	158
9	Conversion of L-Proline to Pyrrolyl-2-Carboxyl-S-PCP during Undecylprodigiosin and Pyoluteorin Biosynthesis. Chemistry and Biology, 2002, 9, 171-184.	6.0	147
10	Manipulation of Carrier Proteins in Antibiotic Biosynthesis. Chemistry and Biology, 2004, 11, 195-201.	6.0	138
11	Unveiling the functional diversity of the alpha/beta hydrolase superfamily in the plant kingdom. Current Opinion in Structural Biology, 2016, 41, 233-246.	5.7	135
12	The chemical biology of modular biosynthetic enzymes. Chemical Society Reviews, 2009, 38, 2012.	38.1	123
13	One-pot chemo-enzymatic synthesis of reporter-modified proteins. Organic and Biomolecular Chemistry, 2006, 4, 44-46.	2.8	119
14	Manipulating Fatty Acid Biosynthesis in Microalgae for Biofuel through Protein-Protein Interactions. PLoS ONE, 2012, 7, e42949.	2.5	107
15	The ubiquitous carrier protein—a window to metabolite biosynthesis. Natural Product Reports, 2007, 24, 750.	10.3	105
16	Site-specific protein modification: advances and applications. Current Opinion in Chemical Biology, 2007, 11, 12-19.	6.1	104
17	Taxon-specific aerosolization of bacteria and viruses in an experimental ocean-atmosphere mesocosm. Nature Communications, 2018, 9, 2017.	12.8	103
18	In Vivo Reporter Labeling of Proteins via Metabolic Delivery of Coenzyme A Analogues. Journal of the American Chemical Society, 2005, 127, 11234-11235.	13.7	98

#	Article	IF	CITATIONS
19	RNA Splicing Modulation Selectively Impairs Leukemia Stem Cell Maintenance in Secondary Human AML. Cell Stem Cell, 2016, 19, 599-612.	11.1	97
20	Unraveling the Role of Linker Design in Proteolysis Targeting Chimeras. Journal of Medicinal Chemistry, 2021, 64, 8042-8052.	6.4	87
21	Mechanism-Based Protein Cross-Linking Probes To Investigate Carrier Protein-Mediated Biosynthesis. ACS Chemical Biology, 2006, 1, 687-691.	3.4	86
22	Targeting the spliceosome in chronic lymphocytic leukemia with the macrolides FD-895 and pladienolide-B. Haematologica, 2015, 100, 945-954.	3.5	73
23	Type II fatty acid and polyketide synthases: deciphering protein–protein and protein–substrate interactions. Natural Product Reports, 2018, 35, 1029-1045.	10.3	73
24	Renewable Polyurethanes from Sustainable Biological Precursors. Biomacromolecules, 2021, 22, 1770-1794.	5.4	65
25	Antitumor Activity of 1,18-Octadecanedioic Acid-Paclitaxel Complexed with Human Serum Albumin. Journal of the American Chemical Society, 2019, 141, 11765-11769.	13.7	61
26	Using Modern Tools To Probe the Structure–Function Relationship of Fatty Acid Synthases. ChemBioChem, 2015, 16, 528-547.	2.6	60
27	System and method for research-scale outdoor production of microalgae and cyanobacteria. Bioresource Technology, 2014, 166, 273-281.	9.6	57
28	Evaluation of phenotype stability and ecological risk of a genetically engineered alga in open pond production. Algal Research, 2017, 24, 378-386.	4.6	56
29	Discovering de novo peptide substrates for enzymes using machine learning. Nature Communications, 2018, 9, 5253.	12.8	55
30	An Orthogonal Active Site Identification System (OASIS) for Proteomic Profiling of Natural Product Biosynthesis. ACS Chemical Biology, 2009, 4, 948-957.	3.4	54
31	Structure and Substrate Sequestration in the Pyoluteorin Type II Peptidyl Carrier Protein PltL. Journal of the American Chemical Society, 2015, 137, 11546-11549.	13.7	53
32	Type II non-ribosomal peptide synthetase proteins: structure, mechanism, and protein–protein interactions. Natural Product Reports, 2020, 37, 355-379.	10.3	50
33	Versatility of Acyl-Acyl Carrier Protein Synthetases. Chemistry and Biology, 2014, 21, 1293-1299.	6.0	47
34	Visualizing the Chainâ€Flipping Mechanism in Fattyâ€Acid Biosynthesis. Angewandte Chemie - International Edition, 2014, 53, 14456-14461.	13.8	45
35	Gating mechanism of elongating \hat{l}^2 -ketoacyl-ACP synthases. Nature Communications, 2020, 11, 1727.	12.8	44
36	Dehydratase-Specific Probes for Fatty Acid and Polyketide Synthases. Journal of the American Chemical Society, 2012, 134, 769-772.	13.7	43

#	Article	IF	CITATIONS
37	Structure of FD-895 Revealed through Total Synthesis. Organic Letters, 2012, 14, 5396-5399.	4.6	43
38	Crosslinking Studies of Protein-Protein Interactions in Nonribosomal Peptide Biosynthesis. Chemistry and Biology, 2009, 16, 372-381.	6.0	42
39	Molecular basis for interactions between an acyl carrier protein and a ketosynthase. Nature Chemical Biology, 2019, 15, 669-671.	8.0	41
40	Structural and dynamical rationale for fatty acid unsaturation in <i>Escherichia coli</i> . Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 6775-6783.	7.1	41
41	Structural basis for selectivity in a highly reducing type II polyketide synthase. Nature Chemical Biology, 2020, 16, 776-782.	8.0	41
42	Probing the Compatibility of Type II Ketosynthase–Carrier Protein Partners. ChemBioChem, 2008, 9, 2096-2103.	2.6	40
43	A synthetic entry to pladienolide B and FD-895. Bioorganic and Medicinal Chemistry Letters, 2007, 17, 5159-5164.	2.2	39
44	Reversible labeling of native and fusion-protein motifs. Nature Methods, 2012, 9, 981-984.	19.0	39
45	Sulfonyl 3-Alkynyl Pantetheinamides as Mechanism-Based Cross-Linkers of Acyl Carrier Protein Dehydratase. Journal of the American Chemical Society, 2013, 135, 8846-8849.	13.7	38
46	Rapid biodegradation of renewable polyurethane foams with identification of associated microorganisms and decomposition products. Bioresource Technology Reports, 2020, 11, 100513.	2.7	37
47	Flexible polyurethanes, renewable fuels, and flavorings from a microalgae oil waste stream. Green Chemistry, 2020, 22, 3088-3094.	9.0	37
48	Mechanism-based crosslinking as a gauge for functional interaction of modular synthases. Organic and Biomolecular Chemistry, 2010, 8, 1769.	2.8	35
49	The Determinants of Activity and Specificity in Actinorhodin Type II Polyketide Ketoreductase. Chemistry and Biology, 2013, 20, 1225-1234.	6.0	35
50	Modular Synthesis of Pantetheine and Phosphopantetheine. Organic Letters, 2004, 6, 4801-4803.	4.6	34
51	Selenomelanin: An Abiotic Selenium Analogue of Pheomelanin. Journal of the American Chemical Society, 2020, 142, 12802-12810.	13.7	34
52	A Challenging Pie to Splice: Drugging the Spliceosome. Angewandte Chemie - International Edition, 2017, 56, 12052-12063.	13.8	32
53	Matching Protein Interfaces for Improved Medium-Chain Fatty Acid Production. ACS Synthetic Biology, 2018, 7, 1179-1187.	3.8	31
54	Interfacial plasticity facilitates high reaction rate of <i>E. coli</i> FAS malonyl-CoA:ACP transacylase, FabD. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 24224-24233.	7.1	31

#	Article	IF	CITATIONS
55	Fluorescent Profiling of Modular Biosynthetic Enzymes by Complementary Metabolic and Activity Based Probes. Journal of the American Chemical Society, 2008, 130, 5443-5445.	13.7	30
56	Active site-directed proteomic probes for adenylation domains in nonribosomal peptide synthetases. Chemical Communications, 2015, 51, 2262-2265.	4.1	30
57	An Optimized Immunoaffinity Fluorescent Method for Natural Product Target Elucidation. Journal of Natural Products, 2010, 73, 1659-1666.	3.0	29
58	Releasing Stored Solar Energy within Pond Scum: Biodiesel from Algal Lipids. Journal of Chemical Education, 2012, 89, 239-242.	2.3	29
59	Stabilized Cyclopropane Analogs of the Splicing Inhibitor FD-895. Journal of Medicinal Chemistry, 2013, 56, 6576-6582.	6.4	28
60	Metabolic engineering—a genetic toolbox for small molecule organic synthesis. Organic and Biomolecular Chemistry, 2003, 1, 1-4.	2.8	27
61	Binding and p <i>K</i> _a Modulation of a Polycyclic Substrate Analogue in a Type II Polyketide Acyl Carrier Protein. ACS Chemical Biology, 2011, 6, 413-418.	3.4	27
62	Modeling Linear and Cyclic PKS Intermediates through Atom Replacement. Journal of the American Chemical Society, 2014, 136, 16792-16799.	13.7	27
63	An orthogonal purification strategy for isolating crosslinked domains of modular synthases. Bioorganic and Medicinal Chemistry Letters, 2008, 18, 3039-3042.	2.2	26
64	Probing the Substrate Specificity and Protein-Protein Interactions of the E.Âcoli Fatty Acid Dehydratase, FabA. Chemistry and Biology, 2015, 22, 1453-1460.	6.0	26
65	Carrier Protein Recognition in Siderophore-Producing Nonribosomal Peptide Synthetasesâ€. Biochemistry, 2002, 41, 8429-8437.	2.5	24
66	Online Analysis of Single Cyanobacteria and Algae Cells under Nitrogen-Limited Conditions Using Aerosol Time-of-Flight Mass Spectrometry. Analytical Chemistry, 2015, 87, 8039-8046.	6.5	24
67	Trapping of the Enoyl-Acyl Carrier Protein Reductase–Acyl Carrier Protein Interaction. Journal of the American Chemical Society, 2016, 138, 3962-3965.	13.7	23
68	Elucidation of transient protein-protein interactions within carrier protein-dependent biosynthesis. Communications Biology, 2021, 4, 340.	4.4	23
69	Development of a cyanobacterial heterologous polyketide production platform. Metabolic Engineering, 2018, 49, 94-104.	7.0	22
70	Evolution of acyl-ACP thioesterases and β-ketoacyl-ACP synthases revealed by protein–protein interactions. Journal of Applied Phycology, 2014, 26, 1619-1629.	2.8	21
71	Proteomic analysis of polyketide and nonribosomal peptide biosynthesis. Current Opinion in Chemical Biology, 2011, 15, 48-56.	6.1	20
72	Bioinspired Chemoenzymatic Route to Artificial Melanin for Hair Pigmentation. Chemistry of Materials, 2020, 32, 9201-9210.	6.7	20

#	Article	IF	CITATIONS
73	Chapter 9 Synthetic Probes for Polyketide and Nonribosomal Peptide Biosynthetic Enzymes. Methods in Enzymology, 2009, 458, 219-254.	1.0	19
74	Selectivity in Small Molecule Splicing Modulation. ACS Chemical Biology, 2016, 11, 2716-2723.	3.4	19
75	Biosynthetic potential of sesquiterpene synthases: product profiles of Egyptian Henbane premnaspirodiene synthase and related mutants. Journal of Antibiotics, 2016, 69, 524-533.	2.0	19
76	Preparation of Mono- and Diisocyanates in Flow from Renewable Carboxylic Acids. Organic Process Research and Development, 2020, 24, 2342-2346.	2.7	19
77	Fatty acid esters produced by Lasiodiplodia theobromae function as growth regulators in tobacco seedlings. Biochemical and Biophysical Research Communications, 2016, 472, 339-345.	2.1	18
78	Polyketide mimetics yield structural and mechanistic insights into product template domain function in nonreducing polyketide synthases. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E4142-E4148.	7.1	18
79	Chemoenzymatic elaboration of the Raper–Mason pathway unravels the structural diversity within eumelanin pigments. Chemical Science, 2020, 11, 7836-7841.	7.4	17
80	Dynamic visualization of type II peptidyl carrier protein recognition in pyoluteorin biosynthesis. RSC Chemical Biology, 2020, 1, 8-12.	4.1	17
81	Traceless Staudinger ligation enabled parallel synthesis of proteolysis targeting chimera linker variants. Chemical Communications, 2021, 57, 1026-1029.	4.1	17
82	Structural and Biochemical Analysis of Protein–Protein Interactions Between the Acylâ€Carrier Protein and Product Template Domain. Angewandte Chemie - International Edition, 2016, 55, 13005-13009.	13.8	16
83	Manipulating Protein–Protein Interactions in Nonribosomal Peptide Synthetase Type II Peptidyl Carrier Proteins. Biochemistry, 2017, 56, 5269-5273.	2.5	16
84	Role of MyD88 in IL-1β and Ethanol Modulation of GABAergic Transmission in the Central Amygdala. Brain Sciences, 2019, 9, 361.	2.3	16
85	Protein-protein interface analysis of the non-ribosomal peptide synthetase peptidyl carrier protein and enzymatic domains. Synthetic and Systems Biotechnology, 2022, 7, 677-688.	3.7	16
86	Chemoenzymatic exchange of phosphopantetheine on protein and peptide. Chemical Science, 2014, 5, 1179-1186.	7.4	15
87	Recent progress and future challenges in algal biofuel production. F1000Research, 2016, 5, 2434.	1.6	14
88	Modifying the Thioester Linkage Affects the Structure of the Acyl Carrier Protein. Angewandte Chemie - International Edition, 2019, 58, 10888-10892.	13.8	14
89	Decoding allosteric regulation by the acyl carrier protein. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	14
90	Structural Basis of Acyl-Carrier Protein Interactions in Fatty Acid and Polyketide Biosynthesis. , 2020, , 61-122.		14

#	Article	IF	CITATIONS
91	Isolation and Characterization of Allomelanin from Pathogenic Black Knot Fungus─a Sustainable Source of Melanin. ACS Omega, 2021, 6, 35514-35522.	3.5	14
92	Fluorescent techniques for discovery and characterization of phosphopantetheinyl transferase inhibitors. Journal of Antibiotics, 2014, 67, 113-120.	2.0	13
93	Activity Mapping the Acyl Carrier Protein: Elongating Ketosynthase Interaction in Fatty Acid Biosynthesis. Biochemistry, 2020, 59, 3626-3638.	2.5	13
94	Chemoenzymatic Generation of Phospholipid Membranes Mediated by Type I Fatty Acid Synthase. Journal of the American Chemical Society, 2021, 143, 8533-8537.	13.7	13
95	A coupled in vitro/in vivo approach for engineering a heterologous type III PKS to enhance polyketide biosynthesis in <i>Saccharomyces cerevisiae</i> . Biotechnology and Bioengineering, 2018, 115, 1394-1402.	3.3	12
96	Trapping the Complex Molecular Machinery of Polyketide and Fatty Acid Synthases with Tunable Silylcyanohydrin Crosslinkers. Angewandte Chemie - International Edition, 2018, 57, 17009-17013.	13.8	12
97	A Single Tool to Monitor Multiple Protein–Protein Interactions of the Escherichia coli Acyl Carrier Protein. ACS Infectious Diseases, 2019, 5, 1518-1523.	3.8	12
98	Tuning the ultrasonic and photoacoustic response of polydopamine-stabilized perfluorocarbon contrast agents. Journal of Materials Chemistry B, 2019, 7, 4833-4842.	5.8	12
99	Mechanistic Probes for the Epimerization Domain of Nonribosomal Peptide Synthetases. ChemBioChem, 2019, 20, 147-152.	2.6	12
100	Structure and Mechanistic Analyses of the Gating Mechanism of Elongating Ketosynthases. ACS Catalysis, 2021, 11, 6787-6799.	11.2	12
101	Activity-guided engineering of natural product carrier proteins. Molecular BioSystems, 2011, 7, 365-370.	2.9	11
102	Structurally Colored Inks from Synthetic Melanin-Based Crosslinked Supraparticles. , 2021, 3, 50-55.		11
103	Tapping a Bacterial Enzymatic Pathway for the Preparation and Manipulation of Synthetic Nanomaterials. Journal of the American Chemical Society, 2014, 136, 17378-17381.	13.7	10
104	Fluorescent Mechanismâ€Based Probe for Aerobic Flavinâ€Dependent Enzyme Activity. ChemBioChem, 2016, 17, 1598-1601.	2.6	10
105	A Carbohydrate-Derived Splice Modulator. Journal of the American Chemical Society, 2016, 138, 5063-5068.	13.7	10
106	Tailoring chemoenzymatic oxidation via in situ peracids. Organic and Biomolecular Chemistry, 2019, 17, 9418-9424.	2.8	9
107	Metabolic probes for imaging endosymbiotic bacteria within toxic dinoflagellates. Chemical Communications, 2010, 46, 8151.	4.1	8
108	Bacteriaâ€driven production of alkyl nitrates in seawater. Geophysical Research Letters, 2015, 42, 597-604.	4.0	8

#	Article	IF	CITATIONS
109	A Substrate Mimic Allows High-Throughput Assay of the FabA Protein and Consequently the Identification of a Novel Inhibitor of Pseudomonas aeruginosa FabA. Journal of Molecular Biology, 2016, 428, 108-120.	4.2	8
110	Enzyme-Directed Functionalization of Designed, Two-Dimensional Protein Lattices. Biochemistry, 2021, 60, 1050-1062.	2.5	8
111	Shifting the Hydrolysis Equilibrium of Substrate Loaded Acyl Carrier Proteins. Biochemistry, 2019, 58, 3557-3560.	2.5	7
112	Quantifying protein-protein interactions of the acyl carrier protein with solvatochromic probes. Methods in Enzymology, 2020, 638, 321-340.	1.0	6
113	Screening and characterization of polyhydroxyalkanoate granules, and phylogenetic analysis of polyhydroxyalkanoate synthase gene <i>PhaC</i> in cyanobacteria. Journal of Phycology, 2021, 57, 754-765.	2.3	6
114	Protein–protein interaction based substrate control in the <i>E. coli</i> octanoic acid transferase, LipB. RSC Chemical Biology, 2021, 2, 1466-1473.	4.1	6
115	Cultivable halotolerant ice-nucleating bacteria and fungi in coastal precipitation. Atmospheric Chemistry and Physics, 2021, 21, 9031-9045.	4.9	6
116	Scalable Synthesis of 17S-FD-895 Expands the Structural Understanding of Splice Modulatory Activity. Cell Reports Physical Science, 2020, 1, 100277.	5.6	6
117	Laboratory Ozonolysis Using an Integrated Batch–DIY Flow System for Renewable Material Production. ACS Omega, 2022, 7, 15350-15358.	3.5	6
118	Data from mass spectrometry, NMR spectra, GC–MS of fatty acid esters produced by Lasiodiplodia theobromae. Data in Brief, 2016, 8, 31-39.	1.0	5
119	Utilizing Mechanistic Cross-Linking Technology To Study Protein–Protein Interactions: An Experiment Designed for an Undergraduate Biochemistry Lab. Journal of Chemical Education, 2017, 94, 375-379.	2.3	5
120	Dissecting modular synthases through inhibition: A complementary chemical and genetic approach. Bioorganic and Medicinal Chemistry Letters, 2020, 30, 126820.	2.2	5
121	Annual productivity and lipid composition of native microalgae (Chlorophyta) at a pilot production facility in Southern California. Algal Research, 2021, 56, 102307.	4.6	5
122	Enzymology of standalone elongating ketosynthases. Chemical Science, 2022, 13, 4225-4238.	7.4	5
123	Phosphopantetheinylation in the green microalgae Chlamydomonas reinhardtii. Journal of Applied Phycology, 2016, 28, 3259-3267.	2.8	4
124	An unusual intramolecular trans-amidation. Tetrahedron, 2016, 72, 3605-3608.	1.9	4
125	Active site labeling of fatty acid and polyketide acyl-carrier protein transacylases. Organic and Biomolecular Chemistry, 2019, 17, 4720-4724.	2.8	4
126	Synthase-Selective Exploration of a Tunicate Microbiome by Activity-Guided Single-Cell Genomics. ACS Chemical Biology, 2021, 16, 813-819.	3.4	4

#	Article	IF	CITATIONS
127	Developing crosslinkers specific for epimerization domain in NRPS initiation modules to evaluate mechanism. RSC Chemical Biology, 2022, 3, 312-319.	4.1	4
128	Resin supported acyl carrier protein labeling strategies. RSC Advances, 2014, 4, 9092-9097.	3.6	3
129	Structural and Biochemical Analysis of Protein–Protein Interactions Between the Acylâ€Carrier Protein and Product Template Domain. Angewandte Chemie, 2016, 128, 13199-13203.	2.0	3
130	A Platform to Enable the Pharmacological Profiling of Small Molecules in Gel-Based Electrophoretic Mobility Shift Assays. Journal of Biomolecular Screening, 2016, 21, 1125-1131.	2.6	3
131	Trapping the Complex Molecular Machinery of Polyketide and Fatty Acid Synthases with Tunable Silylcyanohydrin Crosslinkers. Angewandte Chemie, 2018, 130, 17255-17259.	2.0	3
132	Modifying the Thioester Linkage Affects the Structure of the Acyl Carrier Protein. Angewandte Chemie, 2019, 131, 11004-11008.	2.0	3
133	Splice Modulation Synergizes Cell Cycle Inhibition. ACS Chemical Biology, 2020, 15, 669-674.	3.4	3
134	Modulation of RNA splicing associated with Wnt signaling pathway using FD-895 and pladienolide B. Aging, 2022, 14, 2081-2100.	3.1	3
135	Educating and developing workers for the green economy. Biofuels, 2012, 3, 119-121.	2.4	2
136	Bulk solvent extraction of biomass slurries using a lipid trap. RSC Advances, 2015, 5, 57038-57044.	3.6	2
137	Daedal Facets of Splice Modulator Optimization. ACS Medicinal Chemistry Letters, 2018, 9, 1070-1072.	2.8	2
138	Peroxidase-Like Reactivity at Iron-Chelation Sites in a Mesoporous Synthetic Melanin. CCS Chemistry, 2021, 3, 1483-1490.	7.8	2
139	Control of Unsaturation in <i>De Novo</i> Fatty Acid Biosynthesis by FabA. Biochemistry, 2022, 61, 608-615.	2.5	2
140	Traffic Control in Modular Polyketide Synthases. ACS Central Science, 2016, 2, 9-11.	11.3	1
141	RNA Splicing Modulation Impairs Acute Myeloid Leukemia Stem Cell Maintenance. Blood, 2015, 126, 567-567.	1.4	1
142	Selective Targeting of Alternative Splicing Deregulation in Pediatric Acute Myeloid Stem and Progenitor Cells. Blood, 2020, 136, 8-8.	1.4	1
143	Cryo-Transmission Electron Microscopy of Sea Spray Aerosols. Microscopy and Microanalysis, 2015, 21, 633-634.	0.4	0
144	Das Spliceosom als Angriffspunkt für Pharmaka. Angewandte Chemie, 2017, 129, 12218-12230.	2.0	0

#	Article	IF	CITATIONS
145	In silico identification and in vitro evaluation of a proteinâ€protein interaction inhibitor of Escherichia coli fatty acid biosynthesis. Chemical Biology and Drug Design, 2021, 98, 94-101.	3.2	0
146	Deregulation of Splicing in Pediatric Acute Myeloid Stem and Progenitor Cells. Blood, 2021, 138, 2227-2227.	1.4	0
147	ADAR1 Splicing Modulation As a Mechanism to Eradicate Immunologically Silent Leukemia Stem Cells. Blood, 2021, 138, 3321-3321.	1.4	0
148	Chemoenzymatic Isolation and Characterization of High Purity Mammalian Melanin. ChemBioChem, 2022, 23, e202200021.	2.6	0