Martien J H Kas

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4536496/publications.pdf

Version: 2024-02-01

188 papers 9,133 citations

47 h-index 83 g-index

223 all docs

223 docs citations

times ranked

223

14821 citing authors

#	Article	IF	CITATIONS
1	Effect of disease related biases on the subjective assessment of social functioning in Alzheimer's disease and schizophrenia patients. Journal of Psychiatric Research, 2022, 145, 302-308.	1.5	9
2	Sleep deprivation reduces the density of individual spine subtypes in a branchâ€specific fashion in CA1 neurons. Journal of Sleep Research, 2022, 31, e13438.	1.7	12
3	Common Genetic Variation and Age of Onset of Anorexia Nervosa. Biological Psychiatry Global Open Science, 2022, 2, 368-378.	1.0	10
4	Social dysfunction is transdiagnostically associated with default mode network dysconnectivity in schizophrenia and Alzheimer's disease. World Journal of Biological Psychiatry, 2022, 23, 264-277.	1.3	8
5	Relationships between social withdrawal and facial emotion recognition in neuropsychiatric disorders. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2022, 113, 110463.	2.5	10
6	Histamine H3 receptor antagonism modulates autism-like hyperactivity but not repetitive behaviors in BTBR T+Itpr3tf/J inbred mice. Pharmacology Biochemistry and Behavior, 2022, 212, 173304.	1.3	4
7	Social withdrawal as a trans-diagnostic predictor of short-term remission: a meta-analysis of five clinical cohorts. International Clinical Psychopharmacology, 2022, 37, 38-45.	0.9	9
8	Social withdrawal and neurocognitive correlates in schizophrenia. International Clinical Psychopharmacology, 2022, 37, 102-109.	0.9	3
9	The perks of a quality system in academia. , 2022, 1, 100001.		1
10	Assessment of Social Behavior Using a Passive Monitoring App in Cognitively Normal and Cognitively Impaired Older Adults: Observational Study. JMIR Aging, 2022, 5, e33856.	1.4	2
11	Spatial and Temporal Gene Function Studies in Rodents: Towards Gene-Based Therapies for Autism Spectrum Disorder. Genes, 2022, 13, 28.	1.0	5
12	Cross-disorder and disorder-specific deficits in social functioning among schizophrenia and alzheimer's disease patients. PLoS ONE, 2022, 17, e0263769.	1.1	3
13	Translational validity and methodological underreporting in animal research: A systematic review and meta-analysis of the Fragile X syndrome (Fmr1 KO) rodent model. Neuroscience and Biobehavioral Reviews, 2022, 139, 104722.	2.9	14
14	Shared genetic risk between eating disorder―and substanceâ€useâ€related phenotypes: Evidence from genomeâ€wide association studies. Addiction Biology, 2021, 26, e12880.	1.4	28
15	Digital phenotyping and the COVID-19 pandemic: Capturing behavioral change in patients with psychiatric disorders. European Neuropsychopharmacology, 2021, 42, 115-120.	0.3	26
16	Cntn4, a risk gene for neuropsychiatric disorders, modulates hippocampal synaptic plasticity and behavior. Translational Psychiatry, 2021, 11, 106.	2.4	21
17	Mismatch negativity as EEG biomarker supporting CNS drug development: a transnosographic and translational study. Translational Psychiatry, 2021, 11, 253.	2.4	3
18	Requirements and Operational Guidelines for Secure and Sustainable Digital Phenotyping: Design and Development Study. Journal of Medical Internet Research, 2021, 23, e20996.	2.1	12

#	Article	IF	Citations
19	A Study of Novel Exploratory Tools, Digital Technologies, and Central Nervous System Biomarkers to Characterize Unipolar Depression. Frontiers in Psychiatry, 2021, 12, 640741.	1.3	25
20	Genetic underpinnings of sociability in the general population. Neuropsychopharmacology, 2021, 46, 1627-1634.	2.8	18
21	Introduction to the EQIPD quality system. ELife, 2021, 10, .	2.8	42
22	The continued need for animals to advance brain research. Neuron, 2021, 109, 2374-2379.	3.8	36
23	Measuring Behavior in the Home Cage: Study Design, Applications, Challenges, and Perspectives. Frontiers in Behavioral Neuroscience, 2021, 15, 735387.	1.0	46
24	The role of clock genes in sleep, stress and memory. Biochemical Pharmacology, 2021, 191, 114493.	2.0	28
25	PEERS — An Open Science "Platform for the Exchange of Experimental Research Standards―in Biomedicine. Frontiers in Behavioral Neuroscience, 2021, 15, 755812.	1.0	7
26	EEG-based visual deviance detection in freely behaving mice. NeuroImage, 2021, 245, 118757.	2.1	0
27	Social behavior assessment in cognitively impaired older adults using a passive and remote smartphone application. Alzheimer's and Dementia, 2021, 17, e051698.	0.4	1
28	Examination of the shared genetic basis of anorexia nervosa and obsessive–compulsive disorder. Molecular Psychiatry, 2020, 25, 2036-2046.	4.1	83
29	M38. PATIENT-PERSPECTIVE: NEED FOR CARE AFTER A FIRST PSYCHOSIS. Schizophrenia Bulletin, 2020, 46, S148-S149.	2.3	0
30	A framework for assessing neuropsychiatric phenotypes by using smartphone-based location data. Translational Psychiatry, 2020, 10, 211.	2.4	27
31	P.389 Social withdrawal levels influence cerebellar activity during consumption of monetary rewards – fMRI results from the PRISM clinical study. European Neuropsychopharmacology, 2020, 40, S222-S223.	0.3	0
32	How the COVID-19 pandemic highlights the necessity of animal research. Current Biology, 2020, 30, R1014-R1018.	1.8	26
33	P.228 The role of Protocadherin 9 in layer 6 of the cortex in sensory-related behavioural tasks. European Neuropsychopharmacology, 2020, 31, S39-S40.	0.3	0
34	Reply to â€It is time for an empirically informed paradigm shift in animal research'. Nature Reviews Neuroscience, 2020, 21, 661-662.	4.9	4
35	Reproducibility of animal research in light of biological variation. Nature Reviews Neuroscience, 2020, 21, 384-393.	4.9	193
36	Cross-site Reproducibility of Social Deficits in Group-housed BTBR Mice Using Automated Longitudinal Behavioural Monitoring. Neuroscience, 2020, 445, 95-108.	1.1	13

#	Article	IF	CITATIONS
37	Social withdrawal: An initially adaptive behavior that becomes maladaptive when expressed excessively. Neuroscience and Biobehavioral Reviews, 2020, 116, 251-267.	2.9	14
38	Genetic identification of cell types underlying brain complex traits yields insights into the etiology of Parkinson's disease. Nature Genetics, 2020, 52, 482-493.	9.4	216
39	Basic mechanisms, genetics, targets, and animal models for anxiety disorders. , 2020, , 905-916.		0
40	Overview of the clinical implementation of a study exploring social withdrawal in patients with schizophrenia and Alzheimer's disease. Neuroscience and Biobehavioral Reviews, 2019, 97, 87-93.	2.9	20
41	Reproducibility via coordinated standardization: a multi-center study in a Shank2 genetic rat model for Autism Spectrum Disorders. Scientific Reports, 2019, 9, 11602.	1.6	15
42	Genome-wide association study identifies eight risk loci and implicates metabo-psychiatric origins for anorexia nervosa. Nature Genetics, 2019, 51, 1207-1214.	9.4	641
43	RFID-supported video tracking for automated analysis of social behaviour in groups of mice. Journal of Neuroscience Methods, 2019, 325, 108323.	1.3	41
44	12 GENETIC UNDERPINNINGS OF SOCIABILITY. European Neuropsychopharmacology, 2019, 29, S65.	0.3	0
45	The reduction of astrocytes and brain volume loss in anorexia nervosa—the impact of starvation and refeeding in a rodent model. Translational Psychiatry, 2019, 9, 159.	2.4	43
46	Associations Between Attention-Deficit/Hyperactivity Disorder and Various Eating Disorders: A Swedish Nationwide Population Study Using Multiple Genetically Informative Approaches. Biological Psychiatry, 2019, 86, 577-586.	0.7	43
47	Rodent models of social stress and neuronal plasticity: Relevance to depressive-like disorders. Behavioural Brain Research, 2019, 369, 111900.	1.2	67
48	P.172 Preliminary fMRI results exploring brain activity in a spatial navigation task in schizophrenia, Alzheimer's Disease, and healthy controls. European Neuropsychopharmacology, 2019, 29, S132-S133.	0.3	0
49	P.484 Preliminary fMRI results exploring processing of monetary and social rewards in schizophrenia, Alzheimer's disease, and healthy controls. European Neuropsychopharmacology, 2019, 29, S340-S341.	0.3	0
50	Genomic Relationships, Novel Loci, and Pleiotropic Mechanisms across Eight Psychiatric Disorders. Cell, 2019, 179, 1469-1482.e11.	13.5	935
51	Chronic dietary changes in n-6/n-3 polyunsaturated fatty acid ratios cause developmental delay and reduce social interest in mice. European Neuropsychopharmacology, 2019, 29, 16-31.	0.3	14
52	Quantitative neurosymptomatics: Linking quantitative biology to neuropsychiatry. Neuroscience and Biobehavioral Reviews, 2019, 97, 1-2.	2.9	8
53	Social brain, social dysfunction and social withdrawal. Neuroscience and Biobehavioral Reviews, 2019, 97, 10-33.	2.9	216
54	A quantitative approach to neuropsychiatry: The why and the how. Neuroscience and Biobehavioral Reviews, 2019, 97, 3-9.	2.9	63

#	Article	IF	CITATIONS
55	Multisensory cortical processing and dysfunction across the neuropsychiatric spectrum. Neuroscience and Biobehavioral Reviews, 2019, 97, 138-151.	2.9	35
56	Loss of i>Cntnap2 / i>Causes Axonal Excitability Deficits, Developmental Delay in Cortical Myelination, and Abnormal Stereotyped Motor Behavior. Cerebral Cortex, 2019, 29, 586-597.	1.6	65
57	The Visible Burrow System: A behavioral paradigm to assess sociability and social withdrawal in BTBR and C57BL/6J mice strains. Behavioural Brain Research, 2018, 344, 9-19.	1.2	31
58	Reduced astrocyte density underlying brain volume reduction in activity-based anorexia rats. World Journal of Biological Psychiatry, 2018, 19, 225-235.	1.3	49
59	Structural abnormalities in the primary somatosensory cortex and a normal behavioral profile in <i>Contactin-5</i> deficient mice. Cell Adhesion and Migration, 2018, 12, 5-18.	1.1	10
60	Establishment of a chronic activity-based anorexia rat model. Journal of Neuroscience Methods, 2018, 293, 191-198.	1.3	28
61	Investigation of common, low-frequency and rare genome-wide variation in anorexia nervosa. Molecular Psychiatry, 2018, 23, 1169-1180.	4.1	32
62	Modeling the quantitative nature of neurodevelopmental disorders using Collaborative Cross mice. Molecular Autism, 2018, 9, 63.	2.6	22
63	Passive behavioural monitoring in neuropsychiatric disorders using smartphone technology. European Neuropsychopharmacology, 2018, 28, S87-S88.	0.3	3
64	Studying social withdrawal in group housed mice using semi-natural conditions. European Neuropsychopharmacology, 2018, 28, S46.	0.3	1
65	New approaches in psychiatric drug development. European Neuropsychopharmacology, 2018, 28, 983-993.	0.3	15
66	Heterogeneity of Cell Surface Glutamate and GABA Receptor Expression in Shank and CNTN4 Autism Mouse Models. Frontiers in Molecular Neuroscience, 2018, 11, 212.	1.4	36
67	New European privacy regulation: Assessing the impact for digital medicine innovations. European Psychiatry, 2018, 54, 57-58.	0.1	7
68	Evidence for three genetic loci involved in both anorexia nervosa risk and variation of body mass index. Molecular Psychiatry, 2017, 22, 192-201.	4.1	63
69	Significant Locus and Metabolic Genetic Correlations Revealed in Genome-Wide Association Study of Anorexia Nervosa. American Journal of Psychiatry, 2017, 174, 850-858.	4.0	410
70	Behavioural Phenotypes and Neural Circuit Dysfunctions in Mouse Models of Autism Spectrum Disorder. Advances in Anatomy, Embryology and Cell Biology, 2017, 224, 85-101.	1.0	21
71	Dietary interventions that reduce mTOR activity rescue autistic-like behavioral deficits in mice. Brain, Behavior, and Immunity, 2017, 59, 273-287.	2.0	22
72	Validating a novel protocadherin 9 conditional knockout mouse model to study sensory cortex functioning. European Neuropsychopharmacology, 2017, 27, S604-S605.	0.3	0

#	Article	IF	Citations
73	Modelling Autistic Features in Mice Using Quantitative Genetic Approaches. Advances in Anatomy, Embryology and Cell Biology, 2017, 224, 65-84.	1.0	2
74	Eating disorders: the big issue. Lancet Psychiatry,the, 2016, 3, 313-315.	3.7	177
75	Memory impairment is associated with the loss of regular oestrous cycle and plasma oestradiol levels in an activity-based anorexia animal model. World Journal of Biological Psychiatry, 2016, 17, 274-284.	1.3	27
76	Mapping of a <i><scp>FEB</scp>3</i> homologous febrile seizure locus on mouse chromosome 2 containing candidate genes <i>Scn1a</i> and <i>Scn3a</i> European Journal of Neuroscience, 2016, 44, 2950-2957.	1.2	2
77	Limited impact of Cntn4 mutation on autism-related traits in developing and adult C57BL/6J mice. Journal of Neurodevelopmental Disorders, 2016, 8, 6.	1.5	15
78	The sociability score: App-based social profiling from a healthcare perspective. Computers in Human Behavior, 2016, 59, 39-48.	5.1	44
79	Overview of genetic research in anorexia nervosa: The past, the present and the future. International Journal of Eating Disorders, 2015, 48, 814-825.	2.1	20
80	The genetic and epigenetic landscape for CNS drug discovery targeting cross-diagnostic behavioral domains. European Journal of Pharmacology, 2015, 753, 135-139.	1.7	5
81	The preclinical data forum network: A new ECNP initiative to improve data quality and robustness for (preclinical) neuroscience. European Neuropsychopharmacology, 2015, 25, 1803-1807.	0.3	18
82	Traumatic stress and human DNA methylation: a critical review. Epigenomics, 2015, 7, 593-608.	1.0	93
83	Multilevel control of glucose homeostasis by adenylyl cyclase 8. Diabetologia, 2015, 58, 749-757.	2.9	29
84	mTOR plays an important role in cow's milk allergy-associated behavioral and immunological deficits. Neuropharmacology, 2015, 97, 220-232.	2.0	15
85	Genetic Mapping in Mice Reveals the Involvement of Pcdh9 in Long-Term Social and Object Recognition and Sensorimotor Development. Biological Psychiatry, 2015, 78, 485-495.	0.7	47
86	A candidate syntenic genetic locus is associated with voluntary exercise levels in mice and humans. Behavioural Brain Research, 2015, 276, 8-16.	1.2	4
87	Identification of <i>Srp9</i> as a febrile seizure susceptibility gene. Annals of Clinical and Translational Neurology, 2014, 1, 239-250.	1.7	18
88	The use of mouse models to unravel genetic architecture of physical activity: a review. Genes, Brain and Behavior, 2014, 13, 87-103.	1.1	18
89	Advancing the discovery of medications for autism spectrum disorder using new technologies to reveal social brain circuitry in rodents. Psychopharmacology, 2014, 231, 1147-1165.	1.5	17
90	Assessing behavioural and cognitive domains of autism spectrum disorders in rodents: current status and future perspectives. Psychopharmacology, 2014, 231, 1125-1146.	1.5	111

#	Article	IF	CITATIONS
91	Food for thought: Dietary changes in essential fatty acid ratios and the increase in autism spectrum disorders. Neuroscience and Biobehavioral Reviews, 2014, 45, 369-378.	2.9	53
92	Behavioral signatures related to genetic disorders in autism. Molecular Autism, 2014, 5, 11.	2.6	64
93	Autistic-like behavioural and neurochemical changes in a mouse model of food allergy. Behavioural Brain Research, 2014, 261, 265-274.	1.2	60
94	A genome-wide association study of anorexia nervosa. Molecular Psychiatry, 2014, 19, 1085-1094.	4.1	282
95	Social isolation stress reduces hippocampal long-term potentiation: Effect of animal strain and involvement of glucocorticoid receptors. Neuroscience, 2014, 256, 262-270.	1.1	65
96	Enhancing the value of psychiatric mouse models; differential expression of developmental behavioral and cognitive profiles in four inbred strains of mice. European Neuropsychopharmacology, 2014, 24, 945-954.	0.3	59
97	The Val66Met polymorphism of the BDNF gene in anorexia nervosa: New data and a meta-analysis. World Journal of Biological Psychiatry, 2013, 14, 441-451.	1.3	31
98	Epigenetic dynamics in psychiatric disorders: Environmental programming of neurodevelopmental processes. Neuroscience and Biobehavioral Reviews, 2013, 37, 831-845.	2.9	75
99	Fibroblast Growth Factors in Neurodevelopment and Psychopathology. Neuroscientist, 2013, 19, 479-494.	2.6	44
100	Contactins in the neurobiology of autism. European Journal of Pharmacology, 2013, 719, 63-74.	1.7	83
101	Crossâ€species genetics converge to <scp>TLL2</scp> for mouse avoidance behavior and human bipolar disorder. Genes, Brain and Behavior, 2013, 12, 653-657.	1.1	9
102	Quantitative promoter DNA methylation analysis of four candidate genes inÂanorexia nervosa: A pilot study. Journal of Psychiatric Research, 2013, 47, 280-282.	1.5	23
103	The expression of excessive exercise co-segregates with the risk of developing an eating disorder in women. Psychiatry Research, 2013, 210, 1123-1128.	1.7	21
104	Controlling complexity: the clinical relevance of mouse complex genetics. European Journal of Human Genetics, 2013, 21, 1191-1196.	1.4	29
105	Intranasal Mesenchymal Stem Cell Treatment for Neonatal Brain Damage: Long-Term Cognitive and Sensorimotor Improvement. PLoS ONE, 2013, 8, e51253.	1.1	143
106	Antisense may make sense of 1q44 deletions, seizures, and <i>HNRNPU</i> . American Journal of Medical Genetics, Part A, 2013, 161, 910-912.	0.7	12
107	Longitudinal Changes in the Physical Activity of Adolescents with Anorexia Nervosa and Their Influence on Body Composition and Leptin Serum Levels after Recovery. PLoS ONE, 2013, 8, e78251.	1.1	34
108	Anorexia nervosa and the Val158Met polymorphism of the COMT gene. Psychiatric Genetics, 2012, 22, 130-136.	0.6	27

#	Article	IF	Citations
109	Epigenetics and eating disorders. Current Opinion in Clinical Nutrition and Metabolic Care, 2012, 15, 330-335.	1.3	17
110	Strength to strength for mouse models. Nature, 2012, 492, 41-41.	13.7	13
111	Current Understanding of the Interplay Between Catechol-OMethyltransferase Genetic Variants, Sleep, Brain Development and Cognitive Performance in Schizophrenia. CNS and Neurological Disorders - Drug Targets, 2012, 11, 292-298.	0.8	8
112	Mapping an Xâ€linked locus that influences heatâ€induced febrile seizures in mice. Epilepsia, 2012, 53, 1399-1410.	2.6	4
113	S.19.03 Cross-species genetic analysis of bipolar disorder; from mouse to human. European Neuropsychopharmacology, 2012, 22, S136.	0.3	O
114	Marked inbred mouse strain difference in the expression of quinpirole induced compulsive like behavior based on behavioral pattern analysis. European Neuropsychopharmacology, 2012, 22, 657-663.	0.3	19
115	Current status and future prospects for epigenetic psychopharmacology. Epigenetics, 2012, 7, 20-28.	1.3	82
116	Identifying Predictors of Activity Based Anorexia Susceptibility in Diverse Genetic Rodent Populations. PLoS ONE, 2012, 7, e50453.	1.1	29
117	NPY receptor subtype specification for behavioral adaptive strategies during limited food access. Genes, Brain and Behavior, 2012, 11, 105-112.	1.1	8
118	Wireless implantable micro-stimulation device for high frequency bilateral deep brain stimulation in freely moving mice. Journal of Neuroscience Methods, 2012, 209, 113-119.	1.3	50
119	Mandometer treatment not superior to treatment as usual for anorexia nervosa. International Journal of Eating Disorders, 2012, 45, 193-201.	2.1	18
120	Sex-Dependent Novelty Response in Neurexin-1α Mutant Mice. PLoS ONE, 2012, 7, e31503.	1.1	40
121	Hyperactivity in Anorexia Nervosa: Warming Up Not Just Burning-Off Calories. PLoS ONE, 2012, 7, e41851.	1.1	62
122	Translational Neuroscience of Schizophrenia: Seeking a Meeting of Minds Between Mouse and Man. Science Translational Medicine, 2011, 3, 102mr3.	5.8	18
123	Influence of transgenic corticotropin-releasing factor (CRF) over-expression on social recognition memory in mice. Behavioural Brain Research, 2011, 218, 357-362.	1.2	17
124	Cross-species behavioural genetics: A starting point for unravelling the neurobiology of human psychiatric disorders. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2011, 35, 1383-1390.	2.5	14
125	In search for significant cognitive features in Klinefelter syndrome through cross-species comparison of a supernumerary X chromosome. Genes, Brain and Behavior, 2011, 10, 658-662.	1.1	9
126	Advances in multidisciplinary and cross-species approaches to examine the neurobiology of psychiatric disorders. European Neuropsychopharmacology, 2011, 21, 532-544.	0.3	31

#	Article	IF	CITATIONS
127	Identifying Human Disease Genes through Cross-Species Gene Mapping of Evolutionary Conserved Processes. PLoS ONE, 2011, 6, e18612.	1.1	16
128	The neurobiology of repetitive behavior: … and men. Neuroscience and Biobehavioral Reviews, 2011, 35, 356-365.	2.9	218
129	The neurobiology of repetitive behavior: Of mice…. Neuroscience and Biobehavioral Reviews, 2011, 35, 345-355.	2.9	167
130	Behavioral pattern analysis and dopamine release in quinpirole-induced repetitive behavior in rats. Journal of Psychopharmacology, 2011, 25, 1712-1719.	2.0	31
131	A meta-analysis of circulating BDNF concentrations in anorexia nervosa. World Journal of Biological Psychiatry, 2011, 12, 444-454.	1.3	65
132	Hippocampal Gene Expression Analysis Highlights Ly6a/Sca-1 as Candidate Gene for Previously Mapped Novelty Induced Behaviors in Mice. PLoS ONE, 2011, 6, e20716.	1.1	4
133	Compulsivity in mouse strains homologous with chromosomes 7p and 15q linked to obsessiveâ€compulsive disorder. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2010, 153B, 252-259.	1.1	6
134	Gene expression profiling in C57BL/6J and A/J mouse inbred strains reveals gene networks specific for brain regions independent of genetic background. BMC Genomics, 2010, 11, 20.	1.2	16
135	Dissecting the Clinical Heterogeneity of Autism Spectrum Disorders through Defined Genotypes. PLoS ONE, 2010, 5, e10887.	1.1	91
136	Animal Models of Eating Disorder Traits. Current Topics in Behavioral Neurosciences, 2010, 6, 209-227.	0.8	13
137	The Parent-of-Origin of the Extra X Chromosome May Differentially Affect Psychopathology in Klinefelter Syndrome. Biological Psychiatry, 2010, 68, 1156-1162.	0.7	24
138	Chromosomal mapping of excessive physical activity in mice in response to a restricted feeding schedule. European Neuropsychopharmacology, 2010, 20, 317-326.	0.3	24
139	Interspecies comparisons of functional genetic variations and their implications in neuropsychiatry. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2009, 150B, 309-317.	1.1	22
140	Interspecies genetics of eating disorder traits. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2009, 150B, 318-327.	1.1	20
141	Evidence for Epigenetic Interactions for Loci on Mouse Chromosome 1 Regulating Open Field Activity. Behavior Genetics, 2009, 39, 176-182.	1.4	11
142	Highâ€resolution genetic mapping of mammalian motor activity levels in mice. Genes, Brain and Behavior, 2009, 8, 13-22.	1.1	38
143	Phenotyping mouse chromosome substitution strains reveal multiple QTLs for febrile seizure susceptibility. Genes, Brain and Behavior, 2009, 8, 248-255.	1.1	22
144	Psychiatric Characteristics in a Self-Selected Sample of Boys With Klinefelter Syndrome. Pediatrics, 2009, 123, e865-e870.	1.0	155

#	Article	IF	CITATIONS
145	Variations in ventral root axon morphology and locomotor behavior components across different inbred strains of mice. Neuroscience, 2009, 164, 1477-1483.	1.1	6
146	Interspecies Trait Genetics Reveals Association of Adcy8 with Mouse Avoidance Behavior and a Human Mood Disorder. Biological Psychiatry, 2009, 66, 1123-1130.	0.7	58
147	A grandparent-influenced locus for alcohol preference on mouse chromosome 2. Pharmacogenetics and Genomics, 2009, 19, 719-729.	0.7	9
148	Dopaminergic and brainâ€derived neurotrophic factor signalling in inbred mice exposed to a restricted feeding schedule. Genes, Brain and Behavior, 2008, 7, 552-559.	1.1	69
149	Alterations in serotonin signalling are involved in the hyperactivity of Pitx3â€deficient mice. European Journal of Neuroscience, 2008, 27, 388-395.	1.2	21
150	Behavioural genetics in mood and anxiety: A next step in finding novel pharmacological targets. European Journal of Pharmacology, 2008, 585, 436-440.	1.7	15
151	Translational research into sexual disorders: Pharmacology and genomics. European Journal of Pharmacology, 2008, 585, 426-435.	1.7	58
152	Leptin's effect on hyperactivity: Potential downstream effector mechanisms. Physiology and Behavior, 2008, 94, 689-695.	1.0	24
153	Phenotypic segregation of aphakia and Pitx3-null mutants reveals that Pitx3 deficiency increases consolidation of specific movement components. Behavioural Brain Research, 2008, 186, 208-214.	1.2	18
154	Differential genetic regulation of motor activity and anxiety-related behaviors in mice using an automated home cage task Behavioral Neuroscience, 2008, 122, 769-776.	0.6	44
155	Effects of genetic background and environmental novelty on wheel running as a rewarding behaviour in mice. Behavioural Brain Research, 2007, 177, 290-297.	1.2	35
156	Predictors of recovery of ovarian function during weight gain in anorexia nervosa. Fertility and Sterility, 2007, 87, 902-908.	0.5	48
157	Difference in susceptibility to activity-based anorexia in two inbred strains of mice. European Neuropsychopharmacology, 2007, 17, 199-205.	0.3	69
158	Nurse evaluation of hyperactivity in anorexia nervosa: a comparative study. European Eating Disorders Review, 2007, 15, 425-429.	2.3	21
159	Genetics of behavioural domains across the neuropsychiatric spectrum; of mice and men. Molecular Psychiatry, 2007, 12, 324-330.	4.1	117
160	The impact of hyperactivity and leptin on recovery from anorexia nervosa. Journal of Neural Transmission, 2007, 114, 1233-1237.	1.4	26
161	AgRP(83–132) and SHU9119 differently affect activity-based anorexia. European Neuropsychopharmacology, 2006, 16, 403-412.	0.3	39
162	To eat or not to eat; regulation by the melanocortin system. Physiology and Behavior, 2006, 89, 97-102.	1.0	22

#	Article	IF	Citations
163	Novel approach to the behavioural characterization of inbred mice: automated home cage observations. Genes, Brain and Behavior, 2006, 5, 458-466.	1.1	114
164	The MC4 receptor and control of appetite. British Journal of Pharmacology, 2006, 149, 815-827.	2.7	228
165	Behavioral, physiological, and molecular differences in response to dietary restriction in three inbred mouse strains. American Journal of Physiology - Endocrinology and Metabolism, 2006, 291, E574-E581.	1.8	56
166	The appetite suppressant d-fenfluramine reduces water intake, but not food intake, in activity-based anorexia. Journal of Molecular Endocrinology, 2006, 36, 153-162.	1.1	19
167	Functional analysis of the Ala67Thr polymorphism in agouti related protein associated with anorexia nervosa and leanness. Biochemical Pharmacology, 2005, 70, 308-316.	2.0	18
168	Reduced Anorexigenic Efficacy of Leptin, But Not of the Melanocortin Receptor Agonist Melanotan-II, Predicts Diet-Induced Obesity in Rats. Endocrinology, 2005, 146, 5247-5256.	1.4	15
169	Differential regulation of agouti-related protein and neuropeptide Y in hypothalamic neurons following a stressful event. Journal of Molecular Endocrinology, 2005, 35, 159-164.	1.1	53
170	a-MSH enhances activity-based anorexia. Peptides, 2005, 26, 1690-1696.	1.2	34
171	Voluntary access to a warm plate reduces hyperactivity in activity-based anorexia. Physiology and Behavior, 2005, 85, 151-157.	1.0	42
172	Leptin Treatment in Activity-Based Anorexia. Biological Psychiatry, 2005, 58, 165-171.	0.7	90
173	Olanzapine Reduces Physical Activity in Rats Exposed to Activity-Based Anorexia: Possible Implications for Treatment of Anorexia Nervosa?. Biological Psychiatry, 2005, 58, 651-657.	0.7	77
174	Induction of Brain Region-Specific Forms of Obesity by Agouti. Journal of Neuroscience, 2004, 24, 10176-10181.	1.7	29
175	Mu-opioid receptor knockout mice show diminished food-anticipatory activity. European Journal of Neuroscience, 2004, 20, 1624-1632.	1.2	71
176	Dissecting complex behaviours in the post-genomic era. Trends in Neurosciences, 2004, 27, 366-369.	4.2	50
177	Refinement of behavioural traits in animals for the genetic dissection of eating disorders. European Journal of Pharmacology, 2003, 480, 13-20.	1.7	13
178	Agouti-related protein prevents self-starvation. Molecular Psychiatry, 2003, 8, 235-240.	4.1	65
179	Melanocortin System and Eating Disorders. Annals of the New York Academy of Sciences, 2003, 994, 267-274.	1.8	35
180	AgRP, physiological role of an inverse agonist. International Congress Series, 2003, 1249, 195-206.	0.2	1

#	Article	IF	CITATION
181	Inverse agonism gains weight. Trends in Pharmacological Sciences, 2003, 24, 315-321.	4.0	96
182	A stressful event dissociates food stimulating systems in hypothalamic neurons; implications for obesity and anorexia nervosa. European Neuropsychopharmacology, 2002, 12, 90-91.	0.3	0
183	Melanocortin system and eating disorders. European Neuropsychopharmacology, 2002, 12, 154-155.	0.3	0
184	Scheduled Voluntary Wheel Running Activity Modulates Free-Running Circadian Body Temperature Rhythms in <i>Octodon degus</i> . Journal of Biological Rhythms, 2001, 16, 66-75.	1.4	30
185	Photic phase response curve in Octodon degus: assessment as a function of activity phase preference. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2000, 278, R1385-R1389.	0.9	26
186	Circadian Timed Wakefulness at Dawn Opposes Compensatory Sleep Responses After Sleep Deprivation in Octodon Degus. Sleep, 1999, 22, 1045-1053.	0.6	24
187	A Nonphotic Stimulus Inverts the Diurnal–Nocturnal Phase Preference in∢i>Octodon degus∢/i>. Journal of Neuroscience, 1999, 19, 328-333.	1.7	113
188	Crepuscular Rhythms of EEG Sleep-Wake in a Hystricomorph Rodent, Octodon degus. Journal of Biological Rhythms, 1998, 13, 9-17.	1.4	37