List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4536485/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Lactic acid bacteria feeding reversed the malformed eye structures and ameliorated gut microbiota profiles of <i>Drosophila melanogaster</i> Alzheimer's disease model. Journal of Applied Microbiology, 2022, 132, 3155-3167.	1.4	19
2	Lactobacilli reduce recurrences of vaginal candidiasis in pregnant women: a randomized, double-blind, placebo-controlled study. Journal of Applied Microbiology, 2022, 132, 3168-3180.	1.4	10
3	Probiotic Bifidobacterium lactis Probio-M8 treated and prevented acute RTI, reduced antibiotic use and hospital stay in hospitalized young children: a randomized, double-blind, placebo-controlled study. European Journal of Nutrition, 2022, 61, 1679-1691.	1.8	14
4	Probiotics Reduce Vaginal Candidiasis in Pregnant Women via Modulating Abundance of Candida and Lactobacillus in Vaginal and Cervicovaginal Regions. Microorganisms, 2022, 10, 285.	1.6	8
5	Probiotics: The Next Dietary Strategy against Brain Aging. Preventive Nutrition and Food Science, 2022, 27, 1-13.	0.7	7
6	The molecular mechanisms of probiotic strains in improving ageing bone and muscle of <scp>d</scp> â€galactoseâ€induced ageing rats. Journal of Applied Microbiology, 2021, 130, 1307-1322.	1.4	11
7	Effects of a Lactobacilli Probiotic on Reducing Duration of URTI and Fever, and Use of URTI-Associated Medicine: A Re-Analysis of a Randomized, Placebo-Controlled Study. Microorganisms, 2021, 9, 528.	1.6	7
8	Probiotic consumption relieved human stress and anxiety symptoms possibly via modulating the neuroactive potential of the gut microbiota. Neurobiology of Stress, 2021, 14, 100294.	1.9	70
9	Lactobacillus plantarum USM8613 Aids in Wound Healing and Suppresses Staphylococcus aureus Infection at Wound Sites. Probiotics and Antimicrobial Proteins, 2020, 12, 125-137.	1.9	58
10	Effects of Potential Probiotic Strains on the Fecal Microbiota and Metabolites of d-Galactose-Induced Aging Rats Fed with High-Fat Diet. Probiotics and Antimicrobial Proteins, 2020, 12, 545-562.	1.9	11
11	Putative Probiotic Strains Isolated from Kefir Improve Gastrointestinal Health Parameters in Adults: a Randomized, Single-Blind, Placebo-Controlled Study. Probiotics and Antimicrobial Proteins, 2020, 12, 840-850.	1.9	13
12	Lactobacillus Strains Alleviated Hyperlipidemia and Liver Steatosis in Aging Rats via Activation of AMPK. International Journal of Molecular Sciences, 2020, 21, 5872.	1.8	27
13	Allantoin, a Potential Metabolite That Promotes AMPK Phosphorylation and Suppresses Cholesterol Biosynthesis Via the Mevalonate Pathway and Bloch Pathway. Applied Biochemistry and Biotechnology, 2020, 191, 226-244.	1.4	4
14	Lactobacillus plantarum DR7 Modulated Bowel Movement and Gut Microbiota Associated with Dopamine and Serotonin Pathways in Stressed Adults. International Journal of Molecular Sciences, 2020, 21, 4608.	1.8	44
15	Lactobacillus sp. improved microbiota and metabolite profiles of aging rats. Pharmacological Research, 2019, 146, 104312.	3.1	42
16	Extracellular transglycosylase and glyceraldehyde-3-phosphate dehydrogenase attributed to the anti-staphylococcal activity of Lactobacillus plantarum USM8613. Journal of Biotechnology, 2019, 300, 20-31.	1.9	9
17	Lactobacillus plantarum DR7 improved upper respiratory tract infections via enhancing immune and inflammatory parameters: A randomized, double-blind, placebo-controlled study. Journal of Dairy Science, 2019, 102, 4783-4797.	1.4	80
18	Effects of Lactobacillus plantarum PS128 on Children with Autism Spectrum Disorder in Taiwan: A Randomized, Double-Blind, Placebo-Controlled Trial. Nutrients, 2019, 11, 820.	1.7	128

#	Article	IF	CITATIONS
19	Lactobacillus plantarum DR7 alleviates stress and anxiety in adults: a randomised, double-blind, placebo-controlled study. Beneficial Microbes, 2019, 10, 355-373.	1.0	116
20	<i>Lactobacillus</i> Strains Alleviated Aging Symptoms and Aging-Induced Metabolic Disorders in Aged Rats. Journal of Medicinal Food, 2019, 22, 1-13.	0.8	34
21	Probiotic Lactobacillus plantarum P8 alleviated stress and anxiety while enhancing memory and cognition in stressed adults: A randomised, double-blind, placebo-controlled study. Clinical Nutrition, 2019, 38, 2053-2064.	2.3	159
22	Development and validation of a Chinese translated questionnaire: AÂsingle simultaneous tool for assessing gastrointestinal and upper respiratory tract related illnesses in pre-school children. Journal of Taibah University Medical Sciences, 2018, 13, 135-141.	0.5	12
23	Probiotic Lactobacillus casei Zhang (LCZ) alleviates respiratory, gastrointestinal & RBC abnormality via immuno-modulatory, anti-inflammatory & anti-oxidative actions. Journal of Functional Foods, 2018, 44, 235-245.	1.6	62
24	Bifidobacterium longum BB536 alleviated upper respiratory illnesses and modulated gut microbiota profiles in Malaysian pre-school children. Beneficial Microbes, 2018, 9, 61-70.	1.0	43
25	New perspectives of Lactobacillus plantarum as a probiotic: The gut-heart-brain axis. Journal of Microbiology, 2018, 56, 601-613.	1.3	85
26	DR7 Reduces Cholesterol via Phosphorylation of AMPK That Down-regulated the mRNA Expression of HMG-CoA Reductase. Korean Journal for Food Science of Animal Resources, 2018, 38, 350-361.	1.5	25
27	Lactobacillus fermentum FTDC 8312 combats hypercholesterolemia via alteration of gut microbiota. Journal of Biotechnology, 2017, 262, 75-83.	1.9	52
28	Application of Probiotics for the Production of Safe and High-quality Poultry Meat. Korean Journal for Food Science of Animal Resources, 2016, 36, 567-576.	1.5	80
29	Inhibition of Staphylococcus aureus by crude and fractionated extract from lactic acid bacteria. Beneficial Microbes, 2015, 6, 129-139.	1.0	18
30	Roles of Probiotics on Lifelong Diversifications of Gut Microbiota. Microbiology Monographs, 2015, , 245-263.	0.3	0
31	Probiotics and the BSH-related cholesterol lowering mechanism: a Jekyll and Hyde scenario. Critical Reviews in Biotechnology, 2015, 35, 392-401.	5.1	66
32	Potential ramifications of the effects of sub-lethal ultraviolet B-radiation on the subsequent three subcultures of Lactobacillus fermentum BT 8219 during fermentation in biotin-supplemented soymilk and their probiotic properties. Annals of Microbiology, 2015, 65, 307-319.	1.1	1
33	Bifidobacterium for Infants: Essence and Efficacy. Microbiology Monographs, 2015, , 39-72.	0.3	3
34	Cholesterol-lowering Effects of Probiotics and Prebiotics. , 2015, , 429-446.		5
35	Effect of Electroporation on Bioconversion of Isoflavones and Probiotic Properties of Parents and Subsequent Passages of Bifidobacterium Longum. Applied Biochemistry and Biotechnology, 2014, 174, 1496-1509.	1.4	5
36	Use of extracellular extracts of lactic acid bacteria and bifidobacteria for the inhibition of dermatological pathogen Staphylococcus aureus. Dermatologica Sinica, 2014, 32, 141-147.	0.2	59

#	Article	IF	CITATIONS
37	Mn ²⁺ and Mg ²⁺ synergistically enhanced lactic acid production by <i>Lactobacillus rhamnosus</i> FTDC 8313 via affecting different stages of the hexose monophosphate pathway. Journal of Applied Microbiology, 2014, 116, 644-653.	1.4	14
38	In silico approaches for probiotic-derived bioactives. Trends in Biotechnology, 2014, 32, 599-601.	4.9	4
39	Fe2+ and Cu2+ Increase the Production of Hyaluronic Acid by Lactobacilli via Affecting Different Stages of the Pentose Phosphate Pathway. Applied Biochemistry and Biotechnology, 2014, 173, 129-142.	1.4	14
40	Effect of electroporation on viability and bioconversion of isoflavones in mannitolâ€soymilk fermented by lactobacilli and bifidobacteria. Journal of the Science of Food and Agriculture, 2013, 93, 396-409.	1.7	24
41	Dermal bioactives from lactobacilli and bifidobacteria. Annals of Microbiology, 2013, 63, 1047-1055.	1.1	26
42	Sub-lethal effect of ultraviolet radiation on the growth, intestinal adherence ability and cholesterol removal potentials of parent cells and subsequent sub-culturing of Lactobacillus acidophilus BT 1088 under conditions that mimic the human gastrointestinal tract. Annals of Microbiology, 2013, 63, 615-622.	1.1	0
43	Mn2+ and Mg2+ improved sphingomyelinase production by Lactobacillus rhamnosus FTDC 8313 and binding affinity to sphingomyelin for generation of ceramides. Process Biochemistry, 2013, 48, 1815-1821.	1.8	4
44	Bioactives from probiotics for dermal health: functions and benefits. Journal of Applied Microbiology, 2013, 114, 1241-1253.	1.4	82
45	Growth optimization of <i>Lactobacillus rhamnosus </i> FTDC 8313 and the production of putative dermal bioactives in the presence of manganese and magnesium ions. Journal of Applied Microbiology, 2013, 114, 526-535.	1.4	26
46	Ultraviolet radiation enhanced growth of lactobacilli and their bioconversion of isoflavones in biotin-supplemented soymilk. LWT - Food Science and Technology, 2013, 50, 25-31.	2.5	5
47	Effect of ultrasound on bioconversion of isoflavones and probiotic properties of parent organisms and subsequent passages of Lactobacillus. LWT - Food Science and Technology, 2013, 51, 289-295.	2.5	24
48	Probiotic properties of bifidobacteria and lactobacilli isolated from local dairy products. Annals of Microbiology, 2012, 62, 1079-1087.	1.1	33
49	Enhanced cholesterol removal ability of lactobacilli via alteration of membrane permeability upon ultraviolet radiation. Annals of Microbiology, 2012, 62, 1709-1721.	1.1	3
50	Enhanced growth of lactobacilli and bioconversion of isoflavones in biotin-supplemented soymilk by electroporation. International Journal of Food Sciences and Nutrition, 2012, 63, 580-596.	1.3	17
51	Growth, bioconversion of isoflavones and probiotic properties of parent and subsequent passages of <i>Lactobacillus</i> upon ultraviolet radiation. International Journal of Food Sciences and Nutrition, 2012, 63, 821-831.	1.3	2
52	Enhanced growth and bioconversion of isoflavones in prebiotic-soymilk fermented by UV-treated lactobacilli and bifidobacteria. International Journal of Food Sciences and Nutrition, 2012, 63, 566-579.	1.3	2
53	Enhanced growth of lactobacilli and bioconversion of isoflavones in biotin-supplemented soymilk upon ultrasound-treatment. Ultrasonics Sonochemistry, 2012, 19, 160-173.	3.8	55
54	Ultrasound treatment enhances cholesterol removal ability of lactobacilli. Ultrasonics Sonochemistry, 2012, 19, 632-641.	3.8	24

#	Article	IF	CITATIONS
55	Effects of ultrasound on growth, bioconversion of isoflavones and probiotic properties of parent and subsequent passages of Lactobacillus fermentum BT 8633 in biotin-supplemented soymilk. Ultrasonics Sonochemistry, 2012, 19, 890-900.	3.8	28
56	Effect of Ultrasound on the Growth of Probiotics and Bioconversion of Isoflavones in Prebiotic-Supplemented Soymilk. Journal of Agricultural and Food Chemistry, 2011, 59, 885-897.	2.4	36
57	Carriers of Probiotic Microorganisms. Microbiology Monographs, 2011, , 191-220.	0.3	8
58	Physicochemical characterization of alkali treated fractions from corncob and wheat straw and the production of nanofibres. Food Research International, 2011, 44, 2822-2829.	2.9	28
59	Development of a Probiotic Delivery System from Agrowastes, Soy Protein Isolate, and Microbial Transglutaminase. Journal of Food Science, 2011, 76, H108-15.	1.5	20
60	Development of probiotic carriers using microbial transglutaminase-crosslinked soy protein isolate incorporated with agrowastes. Journal of the Science of Food and Agriculture, 2011, 91, 1406-1415.	1.7	9
61	Roles of Probiotic on Gut Health. Microbiology Monographs, 2011, , 139-165.	0.3	6
62	Effect of prebiotics on viability and growth characteristics of probiotics in soymilk. Journal of the Science of Food and Agriculture, 2010, 90, 267-275.	1.7	115
63	Growth characteristics of agrowasteâ€immobilised lactobacilli in soymilk during refrigerated storage. International Journal of Food Science and Technology, 2010, 45, 2089-2095.	1.3	2
64	Cholesterol-Lowering Effects of Probiotics and Prebiotics: A Review of in Vivo and in Vitro Findings. International Journal of Molecular Sciences, 2010, 11, 2499-2522.	1.8	526
65	Characterization of Fibrous Residues from Agrowastes and the Production of Nanofibers. Journal of Agricultural and Food Chemistry, 2010, 58, 8077-8084.	2.4	37
66	Viability and growth characteristics of <i>Lactobacillus</i> in soymilk supplemented with B-vitamins. International Journal of Food Sciences and Nutrition, 2010, 61, 87-107.	1.3	62
67	Mechanisms of cholesterol removal by lactobacilli under conditions that mimic the human gastrointestinal tract. International Dairy Journal, 2010, 20, 169-175.	1.5	198
68	Evaluation of proteolytic and ACE-inhibitory activity of Lactobacillus acidophilus in soy whey growth medium via response surface methodology. LWT - Food Science and Technology, 2010, 43, 563-567.	2.5	40
69	Angiotensin I-converting enzyme inhibitory activity and bioconversion of isoflavones by probiotics in soymilk supplemented with prebiotics. International Journal of Food Sciences and Nutrition, 2010, 61, 161-181.	1.3	74
70	Removal of cholesterol by lactobacilli via incorporation and conversion to coprostanol. Journal of Dairy Science, 2010, 93, 1383-1392.	1.4	263
71	Lactobacillus acidophilus CHO-220 and inulin reduced plasma total cholesterol and low-density lipoprotein cholesterol via alteration of lipid transporters. Journal of Dairy Science, 2010, 93, 5048-5058.	1.4	69
72	A synbiotic containing Lactobacillus acidophilus CHO-220 and inulin improves irregularity of red blood cells. Journal of Dairy Science, 2010, 93, 4535-4544.	1.4	21

#	Article	IF	CITATIONS
73	Antihypertensive Properties of Plant-Based Prebiotics. International Journal of Molecular Sciences, 2009, 10, 3517-3530.	1.8	43
74	Survival, growth characteristics and bioactive potential of <i>Lactobacillus acidophilus</i> in a soyâ€based cream cheese. Journal of the Science of Food and Agriculture, 2009, 89, 1382-1391.	1.7	29
75	Evaluation of Agrowastes as Immobilizers for Probiotics in Soy Milk. Journal of Agricultural and Food Chemistry, 2009, 57, 10187-10198.	2.4	29
76	The Improvement of Hypertension by Probiotics: Effects on Cholesterol, Diabetes, Renin, and Phytoestrogens. International Journal of Molecular Sciences, 2009, 10, 3755-3775.	1.8	193
77	Growth characteristics and bioactivity of probiotics in tofu-based medium during storage. Annals of Microbiology, 2008, 58, 477-487.	1.1	28
78	DEVELOPMENT OF A SOYâ€BASED CREAM CHEESE. Journal of Texture Studies, 2008, 39, 635-654.	1.1	26
79	Safety of probiotics: translocation and infection. Nutrition Reviews, 2008, 66, 192-202.	2.6	188
80	Optimization of Growth of Lactobacillus acidophilus FTCC 0291 and Evaluation of Growth Characteristics in Soy Whey Medium: A Response Surface Methodology Approach. Journal of Agricultural and Food Chemistry, 2008, 56, 7910-7918.	2.4	45
81	Chemical and Physicochemical Characterization of Agrowaste Fibrous Materials and Residues. Journal of Agricultural and Food Chemistry, 2008, 56, 9252-9257.	2.4	43
82	Roles of Probiotics and Prebiotics in Colon Cancer Prevention: Postulated Mechanisms and In-vivo Evidence. International Journal of Molecular Sciences, 2008, 9, 854-863.	1.8	194
83	Effects of a synbiotic containing Lactobacillus acidophilus ATCC 4962 on plasma lipid profiles and morphology of erythrocytes in hypercholesterolaemic pigs on high- and low-fat diets. British Journal of Nutrition, 2007, 98, 736-44.	1.2	92
84	Probiotics: A Critical Review of Their Potential Role as Antihypertensives, Immune Modulators, Hypocholesterolemics, and Perimenopausal Treatments. Nutrition Reviews, 2007, 65, 316-328.	2.6	81
85	Breast milk from healthy women has higher anti-Candida properties than women with vaginal infections during pregnancy. Food Science and Biotechnology, 0, , .	1.2	3