
Timothy J Nice

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4536453/publications.pdf Version: 2024-02-01

TIMOTHY I NICE

#	Article	IF	CITATIONS
1	Homeostatic interferon-lambda response to bacterial microbiota stimulates preemptive antiviral defense within discrete pockets of intestinal epithelium. ELife, 2022, 11, .	6.0	25
2	Salmonella enterica Serovar Typhimurium Induces NAIP/NLRC4- and NLRP3/ASC-Independent, Caspase-4-Dependent Inflammasome Activation in Human Intestinal Epithelial Cells. Infection and Immunity, 2022, 90, .	2.2	25
3	Transcriptional and Cytotoxic Responses of Human Intestinal Organoids to IFN Types I, II, and III. ImmunoHorizons, 2022, 6, 416-429.	1.8	6
4	CD300lf Conditional Knockout Mouse Reveals Strain-Specific Cellular Tropism of Murine Norovirus. Journal of Virology, 2021, 95, .	3.4	17
5	Norovirus evolution in immunodeficient mice reveals potentiated pathogenicity via a single nucleotide change in the viral capsid. PLoS Pathogens, 2021, 17, e1009402.	4.7	11
6	Innate immune sensing by epithelial barriers. Current Opinion in Immunology, 2021, 73, 1-8.	5.5	16
7	A small RNA is functional in Escherichia fergusonii despite containing a large insertion. Microbiology (United Kingdom), 2021, 167, .	1.8	2
8	Interferon Lambda in the Pathogenesis of Inflammatory Bowel Diseases. Frontiers in Immunology, 2021, 12, 767505.	4.8	12
9	Selective Interferon Responses of Intestinal Epithelial Cells Minimize Tumor Necrosis Factor Alpha Cytotoxicity. Journal of Virology, 2020, 94, .	3.4	24
10	Myoviridae phage PDX kills enteroaggregative Escherichia coli without human microbiome dysbiosis. Journal of Medical Microbiology, 2020, 69, 309-323.	1.8	26
11	Caspase-mediated cleavage of murine norovirus NS1/2 potentiates apoptosis and is required for persistent infection of intestinal epithelial cells. PLoS Pathogens, 2019, 15, e1007940.	4.7	25
12	Segmented Filamentous Bacteria Prevent and Cure Rotavirus Infection. Cell, 2019, 179, 644-658.e13.	28.9	106
13	A Secreted Viral Nonstructural Protein Determines Intestinal Norovirus Pathogenesis. Cell Host and Microbe, 2019, 25, 845-857.e5.	11.0	57
14	IFN-I and IL-22 mediate protective effects of intestinal viral infection. Nature Microbiology, 2019, 4, 1737-1749.	13.3	74
15	The Role of Interferon in Persistent Viral Infection: Insights from Murine Norovirus. Trends in Microbiology, 2018, 26, 510-524.	7.7	41
16	Persistence of Systemic Murine Norovirus Is Maintained by Inflammatory Recruitment of Susceptible Myeloid Cells. Cell Host and Microbe, 2018, 24, 665-676.e4.	11.0	31
17	HOIL1 Is Essential for the Induction of Type I and III Interferons by MDA5 and Regulates Persistent Murine Norovirus Infection. Journal of Virology, 2018, 92, .	3.4	39
18	Expression of <i>Ifnlr1</i> on Intestinal Epithelial Cells Is Critical to the Antiviral Effects of Interferon Lambda against Norovirus and Reovirus. Journal of Virology, 2017, 91, .	3.4	131

Тімотну J Nice

#	Article	IF	CITATIONS
19	You Can Breathe Easy: IFNλ Handles Flu without Triggering a Damaging Inflammatory Response. Immunity, 2017, 46, 768-770.	14.3	5
20	Norovirus Cell Tropism Is Determined by Combinatorial Action of a Viral Non-structural Protein and Host Cytokine. Cell Host and Microbe, 2017, 22, 449-459.e4.	11.0	70
21	Differentiation and Protective Capacity of Virus-Specific CD8+ T Cells Suggest Murine Norovirus Persistence in an Immune-Privileged Enteric Niche. Immunity, 2017, 47, 723-738.e5.	14.3	49
22	Noroviruses Co-opt the Function of Host Proteins VAPA and VAPB for Replication via a Phenylalanine–Phenylalanine-Acidic-Tract-Motif Mimic in Nonstructural Viral Protein NS1/2. MBio, 2017, 8, .	4.1	56
23	Type I Interferon Receptor Deficiency in Dendritic Cells Facilitates Systemic Murine Norovirus Persistence Despite Enhanced Adaptive Immunity. PLoS Pathogens, 2016, 12, e1005684.	4.7	56
24	Interferon-λ: Immune Functions at Barrier Surfaces and Beyond. Immunity, 2015, 43, 15-28.	14.3	381
25	Commensal microbes and interferon-λ determine persistence of enteric murine norovirus infection. Science, 2015, 347, 266-269.	12.6	386
26	Type I Interferons Link Viral Infection to Enhanced Epithelial Turnover and Repair. Cell Host and Microbe, 2015, 17, 85-97.	11.0	78
27	Interferon-λ cures persistent murine norovirus infection in the absence of adaptive immunity. Science, 2015, 347, 269-273.	12.6	308
28	Murine norovirus protein NS1/2 aspartate to glutamate mutation, sufficient for persistence, reorients side chain of surface exposed tryptophan within a novel structured domain. Proteins: Structure, Function and Bioinformatics, 2014, 82, 1200-1209.	2.6	19
29	Virus-helminth coinfection reveals a microbiota-independent mechanism of immunomodulation. Science, 2014, 345, 578-582.	12.6	238
30	A Single-Amino-Acid Change in Murine Norovirus NS1/2 Is Sufficient for Colonic Tropism and Persistence. Journal of Virology, 2013, 87, 327-334.	3.4	111
31	Stress-Regulated Targeting of the NKG2D Ligand Mult1 by a Membrane-Associated RING-CH Family E3 Ligase. Journal of Immunology, 2010, 185, 5369-5376.	0.8	50
32	Posttranslational regulation of the NKG2D ligand Mult1 in response to cell stress. Journal of Experimental Medicine, 2009, 206, 287-298.	8.5	83
33	Posttranslational regulation of the NKG2D ligand Mult1 in response to cell stress. Journal of Cell Biology, 2009, 184, i7-i7.	5.2	1
34	Systemic Viral Persistence Maintained by Recruitment of Preferentially Infected Myeloid Cells. SSRN Electronic Journal, 0, , .	0.4	0