
Gao, Wenbo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4536149/publications.pdf Version: 2024-02-01

GAO WENRO

#	Article	IF	CITATIONS
1	Dinitrogen fixation mediated by lanthanum hydride. Journal of Energy Chemistry, 2022, 72, 1-7.	12.9	4
2	A multi-functional composite nitrogen carrier for ammonia production <i>via</i> a chemical looping route. Journal of Materials Chemistry A, 2021, 9, 1039-1047.	10.3	32
3	<i>In situ</i> formed Co from a Co–Mg–O solid solution synergizing with LiH for efficient ammonia synthesis. Chemical Communications, 2021, 57, 8576-8579.	4.1	11
4	Lithium Palladium Hydride Promotes Chemical Looping Ammonia Synthesis Mediated by Lithium Imide and Hydride. Journal of Physical Chemistry C, 2021, 125, 6716-6722.	3.1	29
5	Emerging Materials and Methods toward Ammoniaâ€Based Energy Storage and Conversion. Advanced Materials, 2021, 33, e2005721.	21.0	137
6	Barium chromium nitride-hydride for ammonia synthesis. Chem Catalysis, 2021, 1, 1042-1054.	6.1	19
7	Ternary ruthenium complex hydrides for ammonia synthesis via the associative mechanism. Nature Catalysis, 2021, 4, 959-967.	34.4	67
8	Enabling Semihydrogenation of Alkynes to Alkenes by Using a Calcium Palladium Complex Hydride. Journal of the American Chemical Society, 2021, 143, 20891-20897.	13.7	20
9	Effect of BaNH, CaNH, Mg3N2 on the activity of Co in NH3 decomposition catalysis. Journal of Energy Chemistry, 2020, 46, 16-21.	12.9	22
10	Advances in the Chemical Looping Ammonia Synthesis. Acta Chimica Sinica, 2020, 78, 916.	1.4	11
11	Hydrides, Amides and Imides Mediated Ammonia Synthesis and Decomposition. Chinese Journal of Chemistry, 2019, 37, 442-451.	4.9	32
12	Thermodynamic Properties of Ammonia Production from Hydrogenation of Alkali and Alkaline Earth Metal Amides. ChemPhysChem, 2019, 20, 1376-1381.	2.1	8
13	Alkali and Alkaline Earth Hydrides-Driven N ₂ Activation and Transformation over Mn Nitride Catalyst. Journal of the American Chemical Society, 2018, 140, 14799-14806.	13.7	81
14	Production of ammonia via a chemical looping process based on metal imides as nitrogen carriers. Nature Energy, 2018, 3, 1067-1075.	39.5	207
15	Barium Hydride-Mediated Nitrogen Transfer and Hydrogenation for Ammonia Synthesis: A Case Study of Cobalt. ACS Catalysis, 2017, 7, 3654-3661.	11.2	136
16	The Formation of Surface Lithium–Iron Ternary Hydride and its Function on Catalytic Ammonia Synthesis at Low Temperatures. Angewandte Chemie, 2017, 129, 8842-8846.	2.0	16
17	The Formation of Surface Lithium–Iron Ternary Hydride and its Function on Catalytic Ammonia Synthesis at Low Temperatures. Angewandte Chemie - International Edition, 2017, 56, 8716-8720.	13.8	58
18	Breaking scaling relations to achieve low-temperature ammonia synthesis through LiH-mediated nitrogen transfer and hydrogenation. Nature Chemistry, 2017, 9, 64-70.	13.6	451