AgustÃ-n G Crevillén

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4535899/publications.pdf

Version: 2024-02-01

471477 454934 34 1,128 17 citations h-index papers

g-index 35 35 35 1289 docs citations times ranked citing authors all docs

30

#	Article	IF	CITATIONS
1	Direct Electrochemical Sensing and Detection of Natural Antioxidants and Antioxidant Capacity in Vitro Systems. Electroanalysis, 2007, 19, 2275-2286.	2.9	150
2	Food Analysis on Microfluidic Devices Using Ultrasensitive Carbon Nanotubes Detectors. Analytical Chemistry, 2007, 79, 7408-7415.	6.5	120
3	Real sample analysis on microfluidic devices. Talanta, 2007, 74, 342-357.	5.5	116
4	Challenges of analytical microsystems. TrAC - Trends in Analytical Chemistry, 2006, 25, 467-479.	11.4	101
5	Towards lab-on-a-chip approaches in real analytical domains based on microfluidic chips/electrochemical multi-walled carbon nanotube platforms. Lab on A Chip, 2009, 9, 346-353.	6.0	83
6	CE microchips: An opened gate to food analysis. Electrophoresis, 2007, 28, 1002-1011.	2.4	71
7	Microchips for CE: Breakthroughs in realâ€world food analysis. Electrophoresis, 2008, 29, 4852-4861.	2.4	68
8	Carbon nanotube disposable detectors in microchip capillary electrophoresis for waterâ€soluble vitamin determination: Analytical possibilities in pharmaceutical quality control. Electrophoresis, 2008, 29, 2997-3004.	2.4	59
9	The preferential electrocatalytic behaviour of graphite and multiwalled carbon nanotubes on enediol groups and their analytical implications in real domains. Analyst, The, 2009, 134, 657.	3.5	49
10	Electroanalytical Approach to Evaluate Antioxidant Capacity in Honeys: Proposal of an Antioxidant Index. Electroanalysis, 2006, 18, 1821-1826.	2.9	30
11	Electrochemical detection based on nanomaterials in CE and microfluidic systems. Electrophoresis, 2019, 40, 113-123.	2.4	30
12	A fast and reliable route integrating calibration and analysis protocols for water-soluble vitamin determination on microchip-electrochemistry platforms. Electrophoresis, 2006, 27, 5110-5118.	2.4	22
13	Striped Alloy Nanowire Optical Reflectance Barcodes Prepared from a Single Plating Solution. Small, 2008, 4, 597-600.	10.0	22
14	Electrochemically Reduced Graphene Oxide-Based Screen-Printed Electrodes for Total Tetracycline Determination by Adsorptive Transfer Stripping Differential Pulse Voltammetry. Sensors, 2020, 20, 76.	3.8	22
15	Development of an SDSâ€gel electrophoresis method on SUâ€8 microchips for protein separation with LIF detection: Application to the analysis of whey proteins. Journal of Separation Science, 2013, 36, 2530-2537.	2.5	20
16	Microchip-electrochemistry route for rapid screening of hydroquinone and arbutin from miscellaneous samples: Investigation of the robustness of a simple cross-injector system. Analytica Chimica Acta, 2006, 562, 137-144.	5.4	18
17	Electrochemical valveless flow microsystems for ultra fast and accurate analysis of total isoflavones with integrated calibration. Analyst, The, 2007, 132, 323-329.	3.5	18
18	Derivatization agents for electrochemical detection in amino acid, peptide and protein separations: The hidden electrochemistry?. Electrophoresis, 2017, 38, 2695-2703.	2.4	18

#	Article	IF	CITATIONS
19	Total $\hat{l}\pm 1$ -acid glycoprotein determination in serum samples using disposable screen-printed electrodes and osmium (VI) as electrochemical tag. Talanta, 2018, 180, 206-210.	5. 5	17
20	Pump-Free Microfluidic Device for the Electrochemical Detection of $\hat{l}\pm < \text{sub} > 1 < / \text{sub} > - \text{Acid Glycoprotein}$. ACS Sensors, 2021, 6, 2998-3005.	7.8	15
21	Extraction-free colorimetric determination of thymol and carvacrol isomers in essential oils by pH-dependent formation of gold nanoparticles. Mikrochimica Acta, 2018, 185, 352.	5.0	12
22	Determination of Glycoproteins by Microchip Electrophoresis Using Os(VI)-Based Selective Electrochemical Tag. Analytical Chemistry, 2019, 91, 10245-10250.	6.5	12
23	Carbon-based Nanomaterials in Analytical Chemistry. RSC Detection Science, 2018, , 1-36.	0.0	10
24	Effect of nanocellulose polymorphism on electrochemical analytical performance in hybrid nanocomposites with non-oxidized single-walled carbon nanotubes. Mikrochimica Acta, 2022, 189, 62.	5.0	10
25	On-chip single column transient isotachophoresis with free zone electrophoresis for preconcentration and separation of \hat{l}_{\pm} -lactalbumin and \hat{l}_{\pm} -lactoglobulin. Microchemical Journal, 2017, 133, 600-606.	4.5	9
26	3D-printed transmembrane glycoprotein cancer biomarker aptasensor. Applied Materials Today, 2021, 24, 101153.	4.3	9
27	Disposable carbon nanotube scaffold films for fast and reliable assessment of total $\hat{l}\pm 1$ -acid glycoprotein in human serum using adsorptive transfer stripping square wave voltammetry. Analytical and Bioanalytical Chemistry, 2019, 411, 1887-1894.	3.7	6
28	Electrochemical sensor for the assessment of carbohydrate deficient transferrin: Application to diagnosis of congenital disorders of glycosilation. Biosensors and Bioelectronics, 2021, 179, 113098.	10.1	6
29	Disposable Passive Electrochemical Microfluidic Device for Diagnosis of Congenital Disorders of Glycosylation. Analysis & Sensing, 0, , .	2.0	2
30	Transferrin analysis in wistar rats plasma: Towards an electrochemical point-of-care approach for the screening of alcohol abuse. Microchemical Journal, 2022, 181, 107738.	4.5	2
31	Gold nanostructure-related non-plasmon resonance absorption band as a fingerprint of ortho-alkyl substituted phenolic compounds. Microchemical Journal, 2021, 171, 106788.	4.5	1
32	Monitorization of $\hat{l}\pm 1$ -Acid Glycoprotein Deglycosylation Using SU-8 Microchips Electrophoresis with LIF Detection. Methods in Molecular Biology, 2019, 1972, 25-39.	0.9	0
33	CE/microchip electrophoresis of carbohydrates and glycoconjugates with electrochemical detection. , 2021, , 563-594.		O
34	Food Analysis by Microchip Electrophoresis. Current and Future Developments in Food Science, 2022, , 321-355.	0.1	O