List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4535704/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Simulated gastrointestinal digestion of cranberry polyphenols under dynamic conditions. Impact on antiadhesive activity against uropathogenic bacteria. Food Chemistry, 2022, 368, 130871.	4.2	15
2	Hypertension- and glycaemia-lowering effects of a grape-pomace-derived seasoning in high-cardiovascular risk and healthy subjects. Interplay with the gut microbiome. Food and Function, 2022, 13, 2068-2082.	2.1	20
3	Ulcerative Colitis Seems to Imply Oral Microbiome Dysbiosis. Current Issues in Molecular Biology, 2022, 44, 1513-1527.	1.0	8
4	Gut microbiome-modulating properties of a polyphenol-enriched dietary supplement comprised of hibiscus and lemon verbena extracts. Monitoring of phenolic metabolites. Journal of Functional Foods, 2022, 91, 105016.	1.6	8
5	Gastrointestinal co-digestion of wine polyphenols with glucose/whey proteins affects their bioaccessibility and impact on colonic microbiota. Food Research International, 2022, 155, 111010.	2.9	20
6	Omic Approaches Coupled to Gastrointestinal Dynamic Modelling to Assess Food Bioactivity. , 2021, , 516-525.		0
7	Revalorization of Coffee Husk: Modeling and Optimizing the Green Sustainable Extraction of Phenolic Compounds. Foods, 2021, 10, 653.	1.9	33
8	Effects of Wine and Its Microbial-Derived Metabolites on Intestinal Permeability Using Simulated Gastrointestinal Digestion/Colonic Fermentation and Caco-2 Intestinal Cell Models. Microorganisms, 2021, 9, 1378.	1.6	14
9	Gastrointestinal Digestion of a Grape Pomace Extract: Impact on Intestinal Barrier Permeability and Interaction with Gut Microbiome. Nutrients, 2021, 13, 2467.	1.7	13
10	Extraction of phenolic compounds from cocoa shell: Modeling using response surface methodology and artificial neural networks. Separation and Purification Technology, 2021, 270, 118779.	3.9	50
11	A multi-omics approach for understanding the effects of moderate wine consumption on human intestinal health. Food and Function, 2021, 12, 4152-4164.	2.1	11
12	Application of the dynamic gastrointestinal simulator (simgi®) to assess the impact of probiotic supplementation in the metabolism of grape polyphenols. Food Research International, 2020, 129, 108790.	2.9	28
13	Glutathione-Stabilized Silver Nanoparticles: Antibacterial Activity against Periodontal Bacteria, and Cytotoxicity and Inflammatory Response in Oral Cells. Biomedicines, 2020, 8, 375.	1.4	15
14	Relationship between Wine Consumption, Diet and Microbiome Modulation in Alzheimer's Disease. Nutrients, 2020, 12, 3082.	1.7	27
15	Sensory acceptability of winery by-products as seasonings for salt replacement. European Food Research and Technology, 2020, 246, 2359-2369.	1.6	5
16	Cranberry Polyphenols and Prevention against Urinary Tract Infections: Relevant Considerations. Molecules, 2020, 25, 3523.	1.7	58
17	Moderate Wine Consumption Reduces Faecal Water Cytotoxicity in Healthy Volunteers. Nutrients, 2020, 12, 2716.	1.7	6
18	Current and future experimental approaches in the study of grape and wine polyphenols interacting gut microbiota. Journal of the Science of Food and Agriculture, 2020, 100, 3789-3802.	1.7	27

#	Article	IF	CITATIONS
19	Plant-derived seasonings as sodium salt replacers in food. Trends in Food Science and Technology, 2020, 99, 194-202.	7.8	33
20	Interplay between Dietary Polyphenols and Oral and Gut Microbiota in the Development of Colorectal Cancer. Nutrients, 2020, 12, 625.	1.7	60
21	New Evidences of Antibacterial Effects of Cranberry Against Periodontal Pathogens. Foods, 2020, 9, 246.	1.9	21
22	Silver Nanoparticles against Foodborne Bacteria. Effects at Intestinal Level and Health Limitations. Microorganisms, 2020, 8, 132.	1.6	83
23	Metabolome-based clustering after moderate wine consumption. Oeno One, 2020, 54, 455-467.	0.7	8
24	Gastrointestinal digestion of food-use silver nanoparticles in the dynamic SIMulator of the GastroIntestinal tract (simgi®). Impact on human gut microbiota. Food and Chemical Toxicology, 2019, 132, 110657.	1.8	41
25	Wine-Derived Phenolic Metabolites in the Digestive and Brain Function. Beverages, 2019, 5, 7.	1.3	9
26	Antimicrobial activity of red wine and oenological extracts against periodontal pathogens in a validated oral biofilm model. BMC Complementary and Alternative Medicine, 2019, 19, 145.	3.7	24
27	Oral Wine Texture Perception and Its Correlation with Instrumental Texture Features of Wine-Saliva Mixtures. Foods, 2019, 8, 190.	1.9	15
28	Antioxidant Characterization and Biological Effects of Grape Pomace Extracts Supplementation in Caenorhabditis elegans. Foods, 2019, 8, 75.	1.9	22
29	Some New Findings Regarding the Antiadhesive Activity of Cranberry Phenolic Compounds and Their Microbial-Derived Metabolites against Uropathogenic Bacteria. Journal of Agricultural and Food Chemistry, 2019, 67, 2166-2174.	2.4	45
30	Impact of a sustained consumption of grape extract on digestion, gut microbial metabolism and intestinal barrier in broiler chickens. Food and Function, 2019, 10, 1444-1454.	2.1	42
31	An integrative salivary approach regarding palate cleansers in wine tasting. Journal of Texture Studies, 2019, 50, 75-82.	1.1	17
32	Some new findings on the potential use of biocompatible silver nanoparticles in winemaking. Innovative Food Science and Emerging Technologies, 2019, 51, 64-72.	2.7	23
33	Inhibition of Oral Pathogens Adhesion to Human Gingival Fibroblasts by Wine Polyphenols Alone and in Combination with an Oral Probiotic. Journal of Agricultural and Food Chemistry, 2018, 66, 2071-2082.	2.4	43
34	An Ultrahigh-Performance Liquid Chromatography–Time-of-Flight Mass Spectrometry Metabolomic Approach to Studying the Impact of Moderate Red-Wine Consumption on Urinary Metabolome. Journal of Proteome Research, 2018, 17, 1624-1635.	1.8	26
35	Supplementation with grape pomace in healthy women: Changes in biochemical parameters, gut microbiota and related metabolic biomarkers. Journal of Functional Foods, 2018, 45, 34-46.	1.6	29
36	Dynamic gastrointestinal digestion of grape pomace extracts: Bioaccessible phenolic metabolites and impact on human gut microbiota. Journal of Food Composition and Analysis, 2018, 68, 41-52.	1.9	68

#	Article	IF	CITATIONS
37	Influence of viscosity on the growth of human gut microbiota. Food Hydrocolloids, 2018, 77, 163-167.	5.6	31
38	Could Fecal Phenylacetic and Phenylpropionic Acids Be Used as Indicators of Health Status?. Journal of Agricultural and Food Chemistry, 2018, 66, 10438-10446.	2.4	25
39	5-(3′,4′-Dihydroxyphenyl)-î³-valerolactone and its sulphate conjugates, representative circulating metabolites of flavan-3-ols, exhibit anti-adhesive activity against uropathogenic Escherichia coli in bladder epithelial cells. Journal of Functional Foods, 2017, 29, 275-280.	1.6	55
40	Strain-specific inhibition of the adherence of uropathogenic bacteria to bladder cells by probiotic Lactobacillus spp Pathogens and Disease, 2017, 75, .	0.8	21
41	Chemical characterization and <i>in vitro</i> colonic fermentation of grape pomace extracts. Journal of the Science of Food and Agriculture, 2017, 97, 3433-3444.	1.7	35
42	Adherence to a Mediterranean Diet Influences the Fecal Metabolic Profile of Microbial-Derived Phenolics in a Spanish Cohort of Middle-Age and Older People. Journal of Agricultural and Food Chemistry, 2017, 65, 586-595.	2.4	63
43	The role of wine and food polyphenols in oral health. Trends in Food Science and Technology, 2017, 69, 118-130.	7.8	33
44	Exploring mouthfeel in model wines: Sensory-to-instrumental approaches. Food Research International, 2017, 102, 478-486.	2.9	40
45	Phylogenetic profile of gut microbiota in healthy adults after moderate intake of red wine. Molecular Nutrition and Food Research, 2017, 61, 1600620.	1.5	43
46	Mouthfeel perception of wine: Oral physiology, components and instrumental characterization. Trends in Food Science and Technology, 2017, 59, 49-59.	7.8	61
47	Reciprocal beneficial effects between wine polyphenols and probiotics: an exploratory study. European Food Research and Technology, 2017, 243, 531-538.	1.6	30
48	An Integrated View of the Effects of Wine Polyphenols and Their Relevant Metabolites on Gut and Host Health. Molecules, 2017, 22, 99.	1.7	107
49	Proanthocyanidin Characterization and Bioactivity of Extracts from Different Parts of Uncaria tomentosa L. (Cat's Claw). Antioxidants, 2017, 6, 12.	2.2	29
50	Neuroprotective Effects of Selected Microbial-Derived Phenolic Metabolites and Aroma Compounds from Wine in Human SH-SY5Y Neuroblastoma Cells and Their Putative Mechanisms of Action. Frontiers in Nutrition, 2017, 4, 3.	1.6	23
51	Some Contributions to the Study of Oenological Lactic Acid Bacteria through Their Interaction with Polyphenols. Beverages, 2016, 2, 27.	1.3	3
52	Selection and technological potential of Lactobacillus plantarum bacteria suitable for wine malolactic fermentation and grape aroma release. LWT - Food Science and Technology, 2016, 73, 557-566.	2.5	76
53	Interactions Between Wine Polyphenols and Gut Microbiota. , 2016, , 259-278.		7
54	Profiling of Phenolic Metabolites in Feces from Menopausal Women after Long-Term Isoflavone Supplementation. Journal of Agricultural and Food Chemistry, 2016, 64, 210-216.	2.4	10

#	Article	IF	CITATIONS
55	Studies on Modulation of Gut Microbiota by Wine Polyphenols: From Isolated Cultures to Omic Approaches. Antioxidants, 2015, 4, 1-21.	2.2	80
56	Anti-Adhesive Activity of Cranberry Phenolic Compounds and Their Microbial-Derived Metabolites against Uropathogenic Escherichia coli in Bladder Epithelial Cell Cultures. International Journal of Molecular Sciences, 2015, 16, 12119-12130.	1.8	74
57	Phenolic Assesment of Uncaria tomentosa L. (Cat's Claw): Leaves, Stem, Bark and Wood Extracts. Molecules, 2015, 20, 22703-22717.	1.7	32
58	A Survey of Modulation of Gut Microbiota by Dietary Polyphenols. BioMed Research International, 2015, 2015, 1-15.	0.9	288
59	Susceptibility and Tolerance of Human Gut Culturable Aerobic Microbiota to Wine Polyphenols. Microbial Drug Resistance, 2015, 21, 17-24.	0.9	6
60	Faecal Metabolomic Fingerprint after Moderate Consumption of Red Wine by Healthy Subjects. Journal of Proteome Research, 2015, 14, 897-905.	1.8	59
61	Application of a new Dynamic Gastrointestinal Simulator (SIMGI) to study the impact of red wine in colonic metabolism. Food Research International, 2015, 72, 149-159.	2.9	54
62	Comparative in vitro fermentations of cranberry and grape seed polyphenols with colonic microbiota. Food Chemistry, 2015, 183, 273-282.	4.2	72
63	Novel biocompatible silver nanoparticles for controlling the growth of lactic acid bacteria and acetic acid bacteria in wines. Food Control, 2015, 50, 613-619.	2.8	40
64	Towards the Fecal Metabolome Derived from Moderate Red Wine Intake. Metabolites, 2014, 4, 1101-1118.	1.3	19
65	Volatile and Phenolic Composition of A Chardonnay Wine Treated with Antimicrobial Plant Extracts before Malolactic Fermentation. Journal of Agricultural Studies, 2014, 2, 62.	0.2	1
66	Changes in the fecal profile of inflammatory markers after moderate consumption of red wine: a human trial study. Wine Studies, 2014, 3, .	0.4	0
67	Moderate intake of red wine promotes a significant increase of phenolic metabolites in human faeces. Nutrition and Aging (Amsterdam, Netherlands), 2014, 2, 151-156.	0.3	0
68	Evaluation of SPE as Preparative Technique for the Analysis of Phenolic Metabolites in Human Feces. Food Analytical Methods, 2014, 7, 844-853.	1.3	11
69	Lactobacillus plantarum IFPL935 impacts colonic metabolism in a simulator of the human gut microbiota during feeding with red wine polyphenols. Applied Microbiology and Biotechnology, 2014, 98, 6805-6815.	1.7	44
70	Chemical evaluation of white wines elaborated with a recombinant Saccharomyces cerevisiae strain overproducing mannoproteins. Food Chemistry, 2014, 147, 84-91.	4.2	4
71	Moderate Consumption of Red Wine Can Modulate Human Intestinal Inflammatory Response. Journal of Agricultural and Food Chemistry, 2014, 62, 10567-10575.	2.4	23
72	Assessment of probiotic properties in lactic acid bacteria isolated from wine. Food Microbiology, 2014, 44, 220-225.	2.1	196

#	Article	IF	CITATIONS
73	Red Wine and Oenological Extracts Display Antimicrobial Effects in an Oral Bacteria Biofilm Model. Journal of Agricultural and Food Chemistry, 2014, 62, 4731-4737.	2.4	37
74	Assessment of the impact of the addition of antimicrobial plant extracts to wine: Volatile and phenolic composition. Journal of the Science of Food and Agriculture, 2013, 93, 2507-2516.	1.7	12
75	Profiling of Microbial-Derived Phenolic Metabolites in Human Feces after Moderate Red Wine Intake. Journal of Agricultural and Food Chemistry, 2013, 61, 9470-9479.	2.4	86
76	Genetic diversity of Oenoccoccus oeni isolated from wines treated with phenolic extracts as antimicrobial agents. Food Microbiology, 2013, 36, 267-274.	2.1	12
77	<i>In vitro</i> fermentation of grape seed flavan-3-ol fractions by human faecal microbiota: changes in microbial groups and phenolic metabolites. FEMS Microbiology Ecology, 2013, 83, 792-805.	1.3	163
78	A winery-scale trial of the use of antimicrobial plant phenolic extracts as preservatives during wine ageing in barrels. Food Control, 2013, 33, 440-447.	2.8	48
79	Comparative Study of Microbial-Derived Phenolic Metabolites in Human Feces after Intake of Gin, Red Wine, and Dealcoholized Red Wine. Journal of Agricultural and Food Chemistry, 2013, 61, 3909-3915.	2.4	67
80	Antimicrobial activity of lacticin 3147 against oenological lactic acid bacteria. Combined effect with other antimicrobial agents. Food Control, 2013, 32, 477-483.	2.8	15
81	Lactobacillus plantarum IFPL935 Favors the Initial Metabolism of Red Wine Polyphenols When Added to a Colonic Microbiota. Journal of Agricultural and Food Chemistry, 2013, 61, 10163-10172.	2.4	38
82	Wine Features Related to Safety and Consumer Health: An Integrated Perspective. Critical Reviews in Food Science and Nutrition, 2012, 52, 31-54.	5.4	81
83	In Vitro Fermentation of a Red Wine Extract by Human Gut Microbiota: Changes in Microbial Groups and Formation of Phenolic Metabolites. Journal of Agricultural and Food Chemistry, 2012, 60, 2136-2147.	2.4	157
84	Antibacterial activity of wine phenolic compounds and oenological extracts against potential respiratory pathogens. Letters in Applied Microbiology, 2012, 54, 557-563.	1.0	68
85	Influence of locally-selected yeast on the chemical and sensorial properties of Albariño white wines. LWT - Food Science and Technology, 2012, 46, 319-325.	2.5	22
86	Antimicrobial phenolic extracts able to inhibit lactic acid bacteria growth and wine malolactic fermentation. Food Control, 2012, 28, 212-219.	2.8	41
87	Phenolic Compound Profiles and Antioxidant Capacity of <i>Persea americana</i> Mill. Peels and Seeds of Two Varieties. Journal of Agricultural and Food Chemistry, 2012, 60, 4613-4619.	2.4	138
88	Comprehensive Assessment of the Quality of Commercial Cranberry Products. Phenolic Characterization and in Vitro Bioactivity. Journal of Agricultural and Food Chemistry, 2012, 60, 3396-3408.	2.4	53
89	Capability of Lactobacillus plantarum IFPL935 To Catabolize Flavan-3-ol Compounds and Complex Phenolic Extracts. Journal of Agricultural and Food Chemistry, 2012, 60, 7142-7151.	2.4	55
90	Gut microbial catabolism of grape seed flavan-3-ols by human faecal microbiota. Targetted analysis of precursor compounds, intermediate metabolites and end-products. Food Chemistry, 2012, 131, 337-347.	4.2	72

6

#	Article	IF	CITATIONS
91	Feasibility and application of liquid–liquid extraction combined with gas chromatography–mass spectrometry for the analysis of phenolic acids from grape polyphenols degraded by human faecal microbiota. Food Chemistry, 2012, 133, 526-535.	4.2	17
92	Degradation of biogenic amines by vineyard ecosystem fungi. Potential use in winemaking. Journal of Applied Microbiology, 2012, 112, 672-682.	1.4	35
93	Synthesis, Analytical Features, and Biological Relevance of 5-(3′,4′-Dihydroxyphenyl)-γ-valerolactone, a Microbial Metabolite Derived from the Catabolism of Dietary Flavan-3-ols. Journal of Agricultural and Food Chemistry, 2011, 59, 7083-7091.	2.4	43
94	Determination of Microbial Phenolic Acids in Human Faeces by UPLC-ESI-TQ MS. Journal of Agricultural and Food Chemistry, 2011, 59, 2241-2247.	2.4	89
95	Antibiosis of vineyard ecosystem fungi against food-borne microorganisms. Research in Microbiology, 2011, 162, 1043-1051.	1.0	14
96	Effect of grape polyphenols on lactic acid bacteria and bifidobacteria growth: Resistance and metabolism. Food Microbiology, 2011, 28, 1345-1352.	2.1	195
97	Comparative study of the inhibitory effects of wine polyphenols on the growth of enological lactic acid bacteria. International Journal of Food Microbiology, 2011, 145, 426-431.	2.1	75
98	Potential of wine-associated lactic acid bacteria to degrade biogenic amines. International Journal of Food Microbiology, 2011, 148, 115-120.	2.1	118
99	Synthesis, structure, theoretical and experimental in vitro antioxidant/pharmacological properties of α-aryl, N-alkyl nitrones, as potential agents for the treatment of cerebral ischemia. Bioorganic and Medicinal Chemistry, 2011, 19, 951-960.	1.4	29
100	Enhancement of anthocyanins and selected aroma compounds in strawberry fruits through methyl jasmonate vapor treatment. European Food Research and Technology, 2010, 230, 989-999.	1.6	43
101	MALDI-TOF MS analysis of plant proanthocyanidins. Journal of Pharmaceutical and Biomedical Analysis, 2010, 51, 358-372.	1.4	163
102	Influence of the Genotype on the Anthocyanin Composition, Antioxidant Capacity and color of Chilean Pomegranate (Punica granatum L.) Juices. Chilean Journal of Agricultural Research, 2010, 70, .	0.4	39
103	Targeted Analysis of Conjugated and Microbial-Derived Phenolic Metabolites in Human Urine After Consumption of an Almond Skin Phenolic Extract. Journal of Nutrition, 2010, 140, 1799-1807.	1.3	29
104	Perspectives of theÂpotential implications of wine polyphenols on human oral and gut microbiota. Trends in Food Science and Technology, 2010, 21, 332-344.	7.8	90
105	Antimicrobial activity of phenolic acids against commensal, probiotic and pathogenic bacteria. Research in Microbiology, 2010, 161, 372-382.	1.0	389
106	Almond (Prunus dulcis (Mill.) D.A. Webb) polyphenols: From chemical characterization to targeted analysis of phenolic metabolites in humans. Archives of Biochemistry and Biophysics, 2010, 501, 124-133.	1.4	45
107	Metabolomics Study of Human Urinary Metabolome Modifications After Intake of Almond (<i>Prunus) Tj ETQq1</i>	1 0.78431 1.8	4 rgBT /Over
109	Insights into the metabolism and microbial biotransformation of dietary flavan-3-ols and the	9.1	515

bioactivity of their metabolites. Food and Function, 2010, 1, 233.

2.1 515

#	Article	IF	CITATIONS
109	Inactivation of oenological lactic acid bacteria (<i>Lactobacillus hilgardii</i> and <i>Pediococcus) Tj ETQq1 1 0.784</i>	314 rgBT 1.4	/Qyerlock
110	Profile of Plasma and Urine Metabolites after the Intake of Almond [Prunus dulcis (Mill.) D.A. Webb] Polyphenols in Humans. Journal of Agricultural and Food Chemistry, 2009, 57, 10134-10142.	2.4	84
111	Comparative Flavan-3-ol Profile and Antioxidant Capacity of Roasted Peanut, Hazelnut, and Almond Skins. Journal of Agricultural and Food Chemistry, 2009, 57, 10590-10599.	2.4	110
112	Effects of red grape juice polyphenols in NADPH oxidase subunit expression in human neutrophils and mononuclear blood cells. British Journal of Nutrition, 2009, 102, 1125-1135.	1.2	36
113	Ultrafiltration as alternative purification procedure for the characterization of low and high molecular-mass phenolics from almond skins. Analytica Chimica Acta, 2008, 609, 241-251.	2.6	48
114	Polyphenols and Antioxidant Properties of Almond Skins: Influence of Industrial Processing. Journal of Food Science, 2008, 73, C106-15.	1.5	115
115	Potential of phenolic compounds for controlling lactic acid bacteria growth in wine. Food Control, 2008, 19, 835-841.	2.8	119
116	Effect of the modifier (Graciano vs. Cabernet sauvignon) on blends of Tempranillo wine during ageing in the bottle. II. Colour and overall appreciation. LWT - Food Science and Technology, 2007, 40, 107-115.	2.5	18
117	ACE-Inhibitory and Radical-Scavenging Activity of Peptides Derived from β-Lactoglobulin f(19â^'25). Interactions with Ascorbic Acid. Journal of Agricultural and Food Chemistry, 2007, 55, 3392-3397.	2.4	129
118	Almond (<i>Prunus dulcis</i> (Mill.) D.A. Webb) Skins as a Potential Source of Bioactive Polyphenols. Journal of Agricultural and Food Chemistry, 2007, 55, 8498-8507.	2.4	143
119	Evaluation of different Saccharomyces cerevisiae strains for red winemaking. Influence on the anthocyanin, pyranoanthocyanin and non-anthocyanin phenolic content and colour characteristics of wines. Food Chemistry, 2007, 104, 814-823.	4.2	50
120	Extraction of antioxidants from almond-processing byproducts Grasas Y Aceites, 2007, 58, .	0.3	6
121	Novel Tacrineâ^`Melatonin Hybrids as Dual-Acting Drugs for Alzheimer Disease, with Improved Acetylcholinesterase Inhibitory and Antioxidant Properties. Journal of Medicinal Chemistry, 2006, 49, 459-462.	2.9	240
122	Commercial Dietary Ingredients fromVitis viniferaL. Leaves and Grape Skins:Â Antioxidant and Chemical Characterization. Journal of Agricultural and Food Chemistry, 2006, 54, 319-327.	2.4	97
123	Effect of the modifier (Graciano vs. Cabernet Sauvignon) on blends of Tempranillo wine during ageing in the bottle. I. Anthocyanins, pyranoanthocyanins and non-anthocyanin phenolics. LWT - Food Science and Technology, 2006, 39, 1133-1142.	2.5	17
124	Time course of the colour of young red wines from Vitis vinifera L. during ageing in bottle. International Journal of Food Science and Technology, 2006, 41, 892-899.	1.3	21
125	Chemical characterization of commercial dietary ingredients from Vitis vinifera L Analytica Chimica Acta, 2006, 563, 401-410.	2.6	47
126	Evolution of the phenolic content of red wines from L. during ageing in bottle. Food Chemistry, 2006, 95, 405-412.	4.2	109

#	Article	IF	CITATIONS
127	Statistical interpretation of the color parameters of red wines in function of their phenolic composition during aging in bottle. European Food Research and Technology, 2006, 222, 702-709.	1.6	42
128	Non-galloylated and galloylated proanthocyanidin oligomers in grape seeds fromVitus vinifera L. cv. Graciano, Tempranillo and Cabernet Sauvignon. Journal of the Science of Food and Agriculture, 2006, 86, 915-921.	1.7	39
129	Quercetin is bioavailable from a single ingestion of grape juice. International Journal of Food Sciences and Nutrition, 2006, 57, 391-398.	1.3	22
130	Antioxidant properties of commercial grape juices and vinegars. Food Chemistry, 2005, 93, 325-330.	4.2	155
131	Evolution of polyphenols in red wines from Vitis vinifera L. during aging in the bottle. European Food Research and Technology, 2005, 220, 607-614.	1.6	45
132	Evolution of polyphenols in red wines from Vitis vinifera L. during aging in the bottle. European Food Research and Technology, 2005, 220, 331-340.	1.6	97
133	Quality Assessment of Commercial Dietary Antioxidant Products From Vitis vinifera L. Grape Seeds. Nutrition and Cancer, 2005, 53, 244-254.	0.9	40
134	Preparation of Antioxidant Enzymatic Hydrolysates from α-Lactalbumin and β-Lactoglobulin. Identification of Active Peptides by HPLC-MS/MS. Journal of Agricultural and Food Chemistry, 2005, 53, 588-593.	2.4	543
135	Updated Knowledge About the Presence of Phenolic Compounds in Wine. Critical Reviews in Food Science and Nutrition, 2005, 45, 85-118.	5.4	301
136	Antioxidant Activity of Peptides Derived from Egg White Proteins by Enzymatic Hydrolysis. Journal of Food Protection, 2004, 67, 1939-1944.	0.8	423
137	Vitis vinifera L. cv. Graciano grapes characterized by its anthocyanin profile. Postharvest Biology and Technology, 2004, 31, 69-79.	2.9	107
138	In vitro antioxidant activity of red grape skins. European Food Research and Technology, 2004, 218, 173-177.	1.6	55
139	Inhibition of methyl linoleate autoxidation by phenolics and other related compounds under mild oxidative conditions. Journal of the Science of Food and Agriculture, 2004, 84, 631-638.	1.7	12
140	Extending Applicability of the Oxygen Radical Absorbance Capacity (ORACâ^'Fluorescein) Assay. Journal of Agricultural and Food Chemistry, 2004, 52, 48-54.	2.4	955
141	Growth and release of hydroxycinnamic acids from Brewer's spent grain by Streptomyces avermitilis CECT 3339. Enzyme and Microbial Technology, 2003, 32, 140-144.	1.6	56
142	Variability of brewer's spent grain within a brewery. Food Chemistry, 2003, 80, 17-21.	4.2	216
143	Cross-inhibitory activity of cereal protein inhibitors against α-amylases and xylanases. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2003, 1650, 136-144.	1.1	31
144	Adsorption of Anthocyanins by Yeast Cell Walls during the Fermentation of Red Wines. Journal of Agricultural and Food Chemistry, 2003, 51, 4084-4088.	2.4	210

#	Article	IF	CITATIONS
145	Monomeric, Oligomeric, and Polymeric Flavan-3-ol Composition of Wines and Grapes fromVitis viniferaL. Cv. Graciano, Tempranillo, and Cabernet Sauvignon. Journal of Agricultural and Food Chemistry, 2003, 51, 6475-6481.	2.4	363
146	Commercial Dietary Antioxidant Supplements Assayed for Their Antioxidant Activity by Different Methodologies. Journal of Agricultural and Food Chemistry, 2003, 51, 2512-2519.	2.4	56
147	Mono- and dimeric ferulic acid release from brewer's spent grain by fungal feruloyl esterases. Applied Microbiology and Biotechnology, 2002, 60, 489-494.	1.7	73
148	Pentoses and Hydroxycinnamic Acids in Brewer's Spent Grain. Journal of Cereal Science, 2002, 36, 51-58.	1.8	51
149	Effects of Wine Phenolics and Sorghum Tannins on Tyrosinase Activity and Growth of Melanoma Cells. Journal of Agricultural and Food Chemistry, 2001, 49, 1620-1624.	2.4	78
150	Hydroxycinnamic Acids and Ferulic Acid Dehydrodimers in Barley and Processed Barley. Journal of Agricultural and Food Chemistry, 2001, 49, 4884-4888.	2.4	190
151	Fast determination of procyanidins and other phenolic compounds in food samples by micellar electrokinetic chromatography using acidic buffers. Electrophoresis, 2001, 22, 1561-1567.	1.3	46
152	Release of Ferulic Acid from Cereal Residues by Barley Enzymatic Extracts. Journal of Cereal Science, 2001, 34, 173-179.	1.8	54
153	Interaction of Low Molecular Weight Phenolics with Proteins (BSA). Journal of Food Science, 2000, 65, 617-621.	1.5	91
154	Phenolics and related substances in alcohol-free beers. European Food Research and Technology, 2000, 210, 419-423.	1.6	56
155	Comparison of Three Methods to Determine the Whey Protein to Total Protein Ratio in Milk. Journal of Dairy Science, 2000, 83, 2759-2765.	1.4	26
156	Determination of whey protein to total protein ratio in UHT milk using fourth derivative spectroscopy. International Dairy Journal, 2000, 10, 191-197.	1.5	28
157	Release of Lipids during Yeast Autolysis in a Model Wine System. Journal of Agricultural and Food Chemistry, 2000, 48, 116-122.	2.4	76
158	Barley spent grain: release of hydroxycinnamic acids (ferulic andp-coumaric acids) by commercial enzyme preparations. Journal of the Science of Food and Agriculture, 1999, 79, 435-439.	1.7	93
159	Characterisation of feruloyl esterase activity in barley. Journal of the Science of Food and Agriculture, 1999, 79, 447-449.	1.7	65
160	Differentiation of intermediate products (concentrates and purées) from the fruit industry by means of phenolic content. European Food Research and Technology, 1998, 206, 355-359.	0.6	7
161	Fractionation and partial characterization of protein fractions present at different stages of the production of sparkling wines. Food Chemistry, 1998, 63, 465-471.	4.2	40
162	Isolation and Characterization of Individual Peptides from Wine. Journal of Agricultural and Food Chemistry, 1998, 46, 3422-3425.	2.4	30

#	Article	IF	CITATIONS
163	Identification of 2,3-Dihydroxy-1-guaiacylpropan-1-one in Brandies. Journal of Agricultural and Food Chemistry, 1997, 45, 873-876.	2.4	18
164	Phenolic Composition of Industrially Manufactured Purées and Concentrates from Peach and Apple Fruits. Journal of Agricultural and Food Chemistry, 1997, 45, 4071-4075.	2.4	96
165	On-Line HPLC Photodiode Array Detection and OPA Derivatization for Partial Identification of Small Peptides from White Wine. Journal of Agricultural and Food Chemistry, 1997, 45, 3374-3381.	2.4	21
166	Enzymic Release of Ferulic Acid from Barley Spent Grain. Journal of Cereal Science, 1997, 25, 285-288.	1.8	72
167	Novel biotransformations of agro-industrial cereal waste by ferulic acid esterases. Industrial Crops and Products, 1997, 6, 367-374.	2.5	51
168	Changes in phenolic compounds in lentils (Lens culinaris) during germination and fermentation. European Food Research and Technology, 1997, 205, 290-294.	0.6	59
169	Phenolic Inhibitors of α-Amylase and Trypsin Enzymes by Extracts From Pears, Lentils, and Cocoa. Journal of Food Protection, 1996, 59, 185-192.	0.8	46
170	Release of the bioactive compound, ferulic acid, from malt extracts. Biochemical Society Transactions, 1996, 24, 379S-379S.	1.6	22
171	Determination of some structural features of procyanidins and related compounds by photodiode-array detection. Journal of Chromatography A, 1996, 723, 19-26.	1.8	64
172	Ferulic acid esterase catalyses the solubilization of ?-glucans and pentosans from the starchy endosperm cell walls of barley. Biotechnology Letters, 1996, 18, 1423-1426.	1.1	34
173	ANTIOXIDANT ACTIONS OF FRUIT, HERB AND SPICE EXTRACTS. Journal of Food Lipids, 1996, 3, 171-188.	0.9	49
174	Nature of the condensed tannins present in the dietary fibre fractions in foods. Food Chemistry, 1995, 53, 357-362.	4.2	18
175	Structure of hydroxycinnamic acid derivatives established by high-perfomance liquid chromatography with photodiode-array detection. Chromatographia, 1995, 41, 94-98.	0.7	43
176	Determination of patulin in apple juice by high-performance liquid chromatography with diode-array detection. Journal of Chromatography A, 1994, 664, 39-43.	1.8	18
177	Photodiode array detection for elucidation of the structure of phenolic compounds. Journal of Chromatography A, 1993, 655, 119-125.	1.8	53
178	Application of principal component analysis to simple determinations of brandies as a means of verifying quality. Zeitschrift Fur Lebensmittel-Untersuchung Und -Forschung, 1993, 197, 260-263.	0.7	4