Andrea Montessori

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4535120/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Lattice Boltzmann approach for complex nonequilibrium flows. Physical Review E, 2015, 92, 043308.	0.8	75
2	Regularized lattice Bhatnagar-Gross-Krook model for two- and three-dimensional cavity flow simulations. Physical Review E, 2014, 89, 053317.	0.8	72
3	Role of Oxygen Functionalities in Graphene Oxide Architectural Laminate Subnanometer Spacing and Water Transport. Environmental Science & Technology, 2017, 51, 4280-4288.	4.6	72
4	Modeling realistic multiphase flows using a non-orthogonal multiple-relaxation-time lattice Boltzmann method. Physics of Fluids, 2019, 31, .	1.6	67
5	Mesoscale modelling of near-contact interactions for complex flowing interfaces. Journal of Fluid Mechanics, 2019, 872, 327-347.	1.4	48
6	Mapping reactive flow patterns in monolithic nanoporous catalysts. Microfluidics and Nanofluidics, 2016, 20, 1.	1.0	46
7	Effects of Knudsen diffusivity on the effective reactivity of nanoporous catalyst media. Journal of Computational Science, 2016, 17, 377-383.	1.5	41
8	Towards Exascale Lattice Boltzmann computing. Computers and Fluids, 2019, 181, 107-115.	1.3	40
9	A multispeed Discrete Boltzmann Model for transcritical 2D shallow water flows. Journal of Computational Physics, 2015, 284, 117-132.	1.9	39
10	Three-Dimensional Lattice Pseudo-Potentials for Multiphase Flow Simulations at High Density Ratios. Journal of Statistical Physics, 2015, 161, 1404-1419.	0.5	35
11	Entropic lattice pseudo-potentials for multiphase flow simulations at high Weber and Reynolds numbers. Physics of Fluids, 2017, 29, .	1.6	34
12	Lattice Boltzmann simulations of gravity currents. European Journal of Mechanics, B/Fluids, 2018, 67, 125-136.	1.2	34
13	Heterogeneous catalysis in pulsed-flow reactors with nanoporous gold hollow spheres. Chemical Engineering Science, 2017, 166, 274-282.	1.9	33
14	Regularized lattice Boltzmann multicomponent models for low capillary and Reynolds microfluidics flows. Computers and Fluids, 2018, 167, 33-39.	1.3	33
15	Modeling pattern formation in soft flowing crystals. Physical Review Fluids, 2019, 4, .	1.0	30
16	Elucidating the mechanism of step emulsification. Physical Review Fluids, 2018, 3, .	1.0	27
17	The vortex-driven dynamics of droplets within droplets. Nature Communications, 2021, 12, 82.	5.8	26
18	Jetting to dripping transition: Critical aspect ratio in step emulsifiers. Physics of Fluids, 2019, 31, .	1.6	25

Andrea Montessori

#	Article	IF	CITATIONS
19	Effect of nanoscale flows on the surface structure of nanoporous catalysts. Journal of Chemical Physics, 2017, 146, 214703.	1.2	24
20	Reassessing the single relaxation time Lattice Boltzmann method for the simulation of Darcy's flows. International Journal of Modern Physics C, 2016, 27, 1650037.	0.8	23
21	Novel nonequilibrium steady states in multiple emulsions. Physics of Fluids, 2020, 32, .	1.6	20
22	Mesoscopic model for soft flowing systems with tunable viscosity ratio. Physical Review Fluids, 2018, 3, .	1.0	20
23	Entropic lattice Boltzmann model for charged leaky dielectric multiphase fluids in electrified jets. Physical Review E, 2018, 97, 033308.	0.8	19
24	Extended friction elucidates the breakdown of fast water transport in graphene oxide membranes. Europhysics Letters, 2016, 116, 54002.	0.7	17
25	Regularized lattice BGK versus highly accurate spectral methods for cavity flow simulations. International Journal of Modern Physics C, 2014, 25, 1441003.	0.8	16
26	Mesoscale modelling of soft flowing crystals. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2019, 377, 20180149.	1.6	16
27	Mesoscale modelling of droplets' self-assembly in microfluidic channels. Soft Matter, 2021, 17, 2374-2383.	1.2	11
28	Wet to dry self-transitions in dense emulsions: From order to disorder and back. Physical Review Fluids, 2021, 6, .	1.0	11
29	Translocation Dynamics of High-Internal Phase Double Emulsions in Narrow Channels. Langmuir, 2021, 37, 9026-9033.	1.6	11
30	LBsoft: A parallel open-source software for simulation of colloidal systems. Computer Physics Communications, 2020, 256, 107455.	3.0	10
31	Shear dynamics of polydisperse double emulsions. Physics of Fluids, 2021, 33, .	1.6	10
32	Dam-Break Modeling: LBM as the Way towards Fully 3D, Large-Scale Applications. Journal of Hydraulic Engineering, 2021, 147, .	0.7	10
33	A fast and efficient deep learning procedure for tracking droplet motion in dense microfluidic emulsions. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2021, 379, 20200400.	1.6	10
34	Concentrated phase emulsion with multicore morphology under shear: A numerical study. Physical Review Fluids, 2020, 5, .	1.0	10
35	Deformation and breakup dynamics of droplets within a tapered channel. Physics of Fluids, 2021, 33, .	1.6	9
36	Stochastic Jetting and Dripping in Confined Soft Granular Flows. Physical Review Letters, 2022, 128, 128001.	2.9	9

ANDREA MONTESSORI

#	Article	IF	CITATIONS
37	Shear dynamics of confined bijels. AIP Advances, 2020, 10, 095304.	0.6	8
38	Tracking droplets in soft granular flows with deep learning techniques. European Physical Journal Plus, 2021, 136, 864.	1.2	8
39	Curvature dynamics and long-range effects on fluid–fluid interfaces with colloids. Soft Matter, 2019, 15, 2848-2862.	1.2	7
40	Depth averaged modelling of loose rectangular granular piles collapsing in water. Advances in Water Resources, 2020, 143, 103663.	1.7	7
41	A gas-kinetic model for 2D transcritical shallow water flows propagating over dry bed. Computers and Mathematics With Applications, 2014, 68, 439-453.	1.4	6
42	Simulation of arrested salt wedges with a multi-layer Shallow Water Lattice Boltzmann model. Advances in Water Resources, 2016, 96, 282-289.	1.7	6
43	A discrete Boltzmann equation model for two-phase shallow granular flows. Computers and Mathematics With Applications, 2018, 75, 2814-2824.	1.4	6
44	Toward exascale design of soft mesoscale materials. Journal of Computational Science, 2020, 46, 101175.	1.5	6
45	Lattice Boltzmann multicomponent model for direct-writing printing. Physics of Fluids, 2021, 33, .	1.6	6
46	Lattice Boltzmann simulations capture the multiscale physics of soft flowing crystals. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2020, 378, 20190406.	1.6	6
47	LBcuda: A high-performance CUDA port of LBsoft for simulation of colloidal systems. Computer Physics Communications, 2022, 277, 108380.	3.0	6
48	Discrete Boltzmann Equation model of polydisperse shallow granular flows. International Journal of Multiphase Flow, 2019, 113, 107-116.	1.6	4
49	Multiparticle collision dynamics for fluid interfaces with near-contact interactions. Journal of Chemical Physics, 2020, 152, 144101.	1.2	4
50	Paradoxical ratcheting in cornstarch. Physics of Fluids, 2015, 27, 103101.	1.6	3
51	Lattice kinetic approach to non-equilibrium flows. AIP Conference Proceedings, 2016, , .	0.3	3
52	Lattice Boltzmann approach for hydro-acoustic waves generated by tsunamigenic sea bottom displacement. Ocean Modelling, 2016, 107, 14-20.	1.0	2
53	Microvorticity fluctuations affect the structure of thin fluid films. Physical Review E, 2019, 100, 042606.	0.8	2
54	A Multiresolution Mesoscale Approach for Microscale Hydrodynamics. Advanced Theory and Simulations, 2020, 3, 1900250.	1.3	2

ANDREA MONTESSORI

#	Article	IF	CITATIONS
55	Microscale modelling of dielectrophoresis assembly processes. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2021, 379, 20200407.	1.6	2
56	On the Effects of Reactant Flow Rarefaction on Heterogeneous Catalysis: a Regularized Lattice Boltzmann Study. Communications in Computational Physics, 2018, 23, .	0.7	2
57	Computational droplets: Where we stand and how far we can go. Europhysics Letters, 2022, 138, 67001.	0.7	2
58	Multicomponent Lattice Boltzmann Models for Biological Applications. , 2018, , 357-370.		1
59	Disordered interfaces in soft fluids with suspended colloids. International Journal of Modern Physics C, 2019, 30, 1941004.	0.8	1
60	A coupled lattice Boltzmann-Multiparticle collision method for multi-resolution hydrodynamics. Journal of Computational Science, 2020, 44, 101160.	1.5	1
61	Two dimensional Lattice Boltzmann numerical simulation of a buoyant jet. , 2016, , 996-1002.		1
62	Dynamics of polydisperse multiple emulsions in microfluidic channels. Physical Review E, 2021, 104, 065112.	0.8	1
63	Dynamic symmetry-breaking in mutually annihilating fluids with selective interfaces. Journal of Statistical Mechanics: Theory and Experiment, 2019, 2019, 083215.	0.9	0
64	Towards a mean-field kinetic model of electroweak baryogenesis. Journal of Physics: Conference Series, 2019, 1354, 012001.	0.3	0