
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4535037/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	An evaluation of neuronal nicotinic acetylcholine receptor activation by quaternary nitrogen compounds indicates that choline is selective for the α7 subtype. Neuroscience Letters, 1996, 213, 201-204.	2.1	264
2	Positive allosteric modulators as an approach to nicotinic acetylcholine receptor-targeted therapeutics: Advantages and limitations. Biochemical Pharmacology, 2011, 82, 915-930.	4.4	236
3	Comparative pharmacology of rat and human α7 nAChR conducted with net charge analysis. British Journal of Pharmacology, 2002, 137, 49-61.	5.4	226
4	Single-channel currents of rat neuronal nicotinic acetylcholine receptors expressed in xenopus oocytes. Neuron, 1989, 3, 589-596.	8.1	182
5	3-[2,4-Dimethoxybenzylidene]anabaseine (DMXB) selectively activates rat α7 receptors and improves memory-related behaviors in a mecamylamine-sensitive manner. Brain Research, 1997, 768, 49-56.	2.2	162
6	Merging old and new perspectives on nicotinic acetylcholine receptors. Biochemical Pharmacology, 2014, 89, 1-11.	4.4	154
7	A novel nicotinic agonist facilitates induction of long-term potentiation in the rat hippocampus. Neuroscience Letters, 1994, 168, 130-134.	2.1	145
8	The kinetic properties of neuronal nicotinic receptors: Genetic basis of functional diversity. Progress in Neurobiology, 1993, 41, 509-531.	5.7	118
9	α7 Receptor-selective agonists and modes of α7 receptor activation. European Journal of Pharmacology, 2000, 393, 179-195.	3.5	107
10	Hydroxy Metabolites of the Alzheimer's Drug Candidate 3-[(2,4-Dimethoxy)Benzylidene]-Anabaseine Dihydrochloride (GTS-21): Their Molecular Properties, Interactions with Brain Nicotinic Receptors, and Brain Penetration. Molecular Pharmacology, 2004, 65, 56-67.	2.3	106
11	Investigation of the Molecular Mechanism of the α7 Nicotinic Acetylcholine Receptor Positive Allosteric Modulator PNU-120596 Provides Evidence for Two Distinct Desensitized States. Molecular Pharmacology, 2011, 80, 1013-1032.	2.3	99
12	Nicotinic Activity of Arecoline, the Psychoactive Element of "Betel Nuts", Suggests a Basis for Habitual Use and Anti-Inflammatory Activity. PLoS ONE, 2015, 10, e0140907.	2.5	96
13	Characterization of the neuroprotective and toxic effects of $\hat{I}\pm7$ nicotinic receptor activation in PC12 cells. Brain Research, 1999, 830, 218-225.	2.2	94
14	Activation and Desensitization of Nicotinic α7-type Acetylcholine Receptors by Benzylidene Anabaseines and Nicotine. Journal of Pharmacology and Experimental Therapeutics, 2009, 329, 791-807.	2.5	83
15	Regulation of Neuronal Function by Choline and 4OH-GTS-21 Through α7 Nicotinic Receptors. Journal of Neurophysiology, 2003, 89, 1797-1806.	1.8	82
16	Extending the analysis of nicotinic receptor antagonists with the study of α6 nicotinic receptor subunit chimeras. Neuropharmacology, 2008, 54, 1189-1200.	4.1	82
17	Activation and inhibition of native neuronal alpha-bungarotoxin-sensitive nicotinic ACh receptors. Brain Research, 2002, 948, 33-46.	2.2	79
18	The correction of alpha7 nicotinic acetylcholine receptor concentration-response relationships in Xenopus oocytes. Neuroscience Letters, 1998, 256, 163-166.	2.1	78

#	Article	IF	CITATIONS
19	The analgesic-like properties of the alpha7 nAChR silent agonist NS6740 is associated with non-conducting conformations of the receptor. Neuropharmacology, 2015, 91, 34-42.	4.1	77
20	Looking below the surface of nicotinic acetylcholine receptors. Trends in Pharmacological Sciences, 2015, 36, 514-523.	8.7	76
21	New Insights on Neuronal Nicotinic Acetylcholine Receptors as Targets for Pain and Inflammation: A Focus on α7 nAChRs. Current Neuropharmacology, 2018, 16, 415-425.	2.9	76
22	Nicotinic Receptors on Local Circuit Neurons in Dentate Gyrus: A Potential Role in Regulation of Granule Cell Excitability. Journal of Neurophysiology, 2003, 89, 3018-3028.	1.8	72
23	Cytisine-Based Nicotinic Partial Agonists as Novel Antidepressant Compounds. Journal of Pharmacology and Experimental Therapeutics, 2009, 329, 377-386.	2.5	71
24	Nicotinic acetylcholine receptors: Conventional and unconventional ligands and signaling. Neuropharmacology, 2020, 168, 108021.	4.1	71
25	The pharmacological activity of nicotine and nornicotine on nAChRs subtypes: relevance to nicotine dependence and drug discovery. Journal of Neurochemistry, 2007, 101, 160-167.	3.9	66
26	Working with OpusXpress: Methods for high volume oocyte experiments. Methods, 2010, 51, 121-133.	3.8	64
27	The α7 nicotinic receptor dual allosteric agonist and positive allosteric modulator GAT107 reverses nociception in mouse models of inflammatory and neuropathic pain. British Journal of Pharmacology, 2016, 173, 2506-2520.	5.4	64
28	The Activation and Inhibition of Human Nicotinic Acetylcholine Receptor by RJR-2403 Indicate a Selectivity for the α4β2 Receptor Subtype. Journal of Neurochemistry, 2001, 75, 204-216.	3.9	59
29	Activation and Inhibition of Mouse Muscle and Neuronal Nicotinic Acetylcholine Receptors Expressed in <i>Xenopus</i> Oocytes. Journal of Pharmacology and Experimental Therapeutics, 2010, 333, 501-518.	2.5	59
30	Electrophysiological Perspectives on the Therapeutic Use of Nicotinic Acetylcholine Receptor Partial Agonists. Journal of Pharmacology and Experimental Therapeutics, 2011, 337, 367-379.	2.5	59
31	Expeditious Synthesis, Enantiomeric Resolution, and Enantiomer Functional Characterization of		

#	Article	IF	CITATIONS
37	Multiple calcium channels and kinases mediate α7 nicotinic receptor neuroprotection in PC12 cells. Journal of Neurochemistry, 2005, 94, 926-933.	3.9	53
38	Multiple Pharmacophores for the Selective Activation of Nicotinic α7-Type Acetylcholine Receptors. Molecular Pharmacology, 2008, 74, 1496-1511.	2.3	52
39	Biochemical and functional properties of distinct nicotinic acetylcholine receptors in the superior cervical ganglion of mice with targeted deletions of nAChR subunit genes. European Journal of Neuroscience, 2010, 31, 978-993.	2.6	52
40	The nicotinic acetylcholine receptors of zebrafish and an evaluation of pharmacological tools used for their study. Biochemical Pharmacology, 2012, 84, 352-365.	4.4	50
41	The α7 nicotinic receptor agonist ABT-107 protects against nigrostriatal damage in rats with unilateral 6-hydroxydopamine lesions. Experimental Neurology, 2015, 263, 277-284.	4.1	50
42	Molecular dissection of tropisetron, an α7 nicotinic acetylcholine receptor-selective partial agonist. Neuroscience Letters, 2005, 378, 140-144.	2.1	49
43	Activation and inhibition of rat neuronal nicotinic receptors by ABT-418. British Journal of Pharmacology, 1997, 120, 429-438.	5.4	48
44	Antagonist activities of mecamylamine and nicotine show reciprocal dependence on beta subunit sequence in the second transmembrane domain. British Journal of Pharmacology, 1999, 127, 1337-1348.	5.4	47
45	The effective opening of nicotinic acetylcholine receptors with single agonist binding sites. Journal of General Physiology, 2011, 137, 369-384.	1.9	44
46	Critical Molecular Determinants of α7 Nicotinic Acetylcholine Receptor Allosteric Activation. Journal of Biological Chemistry, 2016, 291, 5049-5067.	3.4	43
47	Therapeutic Targeting of <i>α</i> 7 Nicotinic Acetylcholine Receptors. Pharmacological Reviews, 2021, 73, 1118-1149.	16.0	43
48	Synthesis and evaluation of a conditionally-silent agonist for the α7 nicotinic acetylcholine receptor. Bioorganic and Medicinal Chemistry Letters, 2013, 23, 4145-4149.	2.2	41
49	The Minimal Pharmacophore for Silent Agonism of the α7 Nicotinic Acetylcholine Receptor. Journal of Pharmacology and Experimental Therapeutics, 2014, 350, 665-680.	2.5	41
50	Two Novel α7 Nicotinic Acetylcholine Receptor Ligands: In Vitro Properties and Their Efficacy in Collagen-Induced Arthritis in Mice. PLoS ONE, 2015, 10, e0116227.	2.5	38
51	Anti-inflammatory Silent Agonists. ACS Medicinal Chemistry Letters, 2017, 8, 989-991.	2.8	38
52	Rabies virus modifies host behaviour through a snake-toxin like region of its glycoprotein that inhibits neurotransmitter receptors in the CNS. Scientific Reports, 2017, 7, 12818.	3.3	38
53	Estimation of both the potency and efficacy of $\hat{I}\pm7$ nAChR agonists from single-concentration responses. Life Sciences, 2006, 78, 2812-2819.	4.3	37
54	Partial agonist and neuromodulatory activity of S 24795 for alpha7 nAChR responses of hippocampal interneurons. Neuropharmacology, 2007, 53, 134-144.	4.1	36

#	Article	IF	CITATIONS
55	The Activity of GAT107, an Allosteric Activator and Positive Modulator of α7 Nicotinic Acetylcholine Receptors (nAChR), Is Regulated by Aromatic Amino Acids That Span the Subunit Interface. Journal of Biological Chemistry, 2014, 289, 4515-4531.	3.4	36
56	Diverse strategies targeting $\hat{l}\pm7$ homomeric and $\hat{l}\pm6\hat{l}^22^*$ heteromeric nicotinic acetylcholine receptors for smoking cessation. Annals of the New York Academy of Sciences, 2014, 1327, 27-45.	3.8	35
57	A silent agonist of α7 nicotinic acetylcholine receptors modulates inflammation ex vivo and attenuates EAE. Brain, Behavior, and Immunity, 2020, 87, 286-300.	4.1	35
58	Use of an α3β4 nicotinic acetylcholine receptor subunit concatamer to characterize ganglionic receptor subtypes with specific subunit composition reveals species-specific pharmacologic properties. Neuropharmacology, 2012, 63, 538-546.	4.1	33
59	Effects at a distance in α7 nAChR selective agonists: benzylidene substitutions that regulate potency and efficacy. Neuropharmacology, 2004, 46, 1023-1038.	4.1	32
60	Neuronal Nicotinic Receptors as Brain Targets for Pharmacotherapy of Drug Addiction. CNS and Neurological Disorders - Drug Targets, 2008, 7, 422-441.	1.4	32
61	Reversal of Agonist Selectivity by Mutations of Conserved Amino Acids in the Binding Site of Nicotinic Acetylcholine Receptors. Journal of Biological Chemistry, 2007, 282, 5899-5909.	3.4	31
62	Dissection of N,N-diethyl-N′-phenylpiperazines as α7 nicotinic receptor silent agonists. Bioorganic and Medicinal Chemistry, 2016, 24, 286-293.	3.0	31
63	Persistent activation of α7 nicotinic ACh receptors associated with stable induction of different desensitized states. British Journal of Pharmacology, 2018, 175, 1838-1854.	5.4	31
64	The Effects of Subunit Composition on the Inhibition of Nicotinic Receptors by the Amphipathic Blocker 2,2,6,6-Tetramethylpiperidin-4-yl Heptanoate. Molecular Pharmacology, 2005, 67, 1977-1990.	2.3	30
65	High Throughput Electrophysiology with Xenopus Oocytes. Combinatorial Chemistry and High Throughput Screening, 2009, 12, 38-50.	1.1	30
66	Role of the α7 Nicotinic Acetylcholine Receptor and RIC-3 in the Cholinergic Anti-inflammatory Pathway. Central Nervous System Agents in Medicinal Chemistry, 2017, 17, 90-99.	1.1	30
67	Modeling Binding Modes of α7 Nicotinic Acetylcholine Receptor with Ligands: The Roles of Cln117 and Other Residues of the Receptor in Agonist Binding. Journal of Medicinal Chemistry, 2008, 51, 6293-6302.	6.4	29
68	The cytisine derivatives, CC4 and CC26, reduce nicotine-induced conditioned place preference in zebrafish by acting on heteromeric neuronal nicotinic acetylcholine receptors. Psychopharmacology, 2014, 231, 4681-4693.	3.1	28
69	An α7 Nicotinic Acetylcholine Receptor Gain-of-Function Mutant That Retains Pharmacological Fidelity. Molecular Pharmacology, 2005, 68, 1863-1876.	2.3	27
70	Cysteine accessibility analysis of the human alpha7 nicotinic acetylcholine receptor ligand-binding domain identifies L119 as a gatekeeper. Neuropharmacology, 2011, 60, 159-171.	4.1	26
71	Multiple Modes of <i>α</i> 7 nAChR Noncompetitive Antagonism of Control Agonist-Evoked and Allosterically Enhanced Currents. Molecular Pharmacology, 2013, 84, 459-475.	2.3	26
72	Discovery and optimization of Lu AF58801, a novel, selective and brain penetrant positive allosteric modulator of alpha-7 nicotinic acetylcholine receptors: Attenuation of subchronic phencyclidine (PCP)-induced cognitive deficits in rats following oral administration. Bioorganic and Medicinal Chemistry Letters, 2014, 24, 288-293.	2.2	26

#	Article	IF	CITATIONS
73	A Single Point Mutation Confers Properties of the Muscle-Type Nicotinic Acetylcholine Receptor to Homomeric α7 Receptors. Molecular Pharmacology, 2004, 66, 169-177.	2.3	25
74	Medial septal/diagonal band cells express multiple functional nicotinic receptor subtypes that are correlated with firing frequency. Neuroscience Letters, 2005, 389, 163-168.	2.1	25
75	Discovery of novel α7 nicotinic receptor antagonists. Bioorganic and Medicinal Chemistry Letters, 2010, 20, 4825-4830.	2.2	25
76	Cracking the Betel Nut: Cholinergic Activity of Areca Alkaloids and Related Compounds. Nicotine and Tobacco Research, 2019, 21, 805-812.	2.6	25
77	Muscle-type nicotinic acetylcholine receptor delta subunit determines sensitivity to noncompetitive inhibitors, while gamma subunit regulates divalent permeability. Neuropharmacology, 1996, 35, 1547-1556.	4.1	24
78	Differential Regulation of Receptor Activation and Agonist Selectivity by Highly Conserved Tryptophans in the Nicotinic Acetylcholine Receptor Binding Site. Journal of Pharmacology and Experimental Therapeutics, 2009, 330, 40-53.	2.5	24
79	Positive modulation of $\hat{1}\pm7$ nAChR responses in rat hippocampal interneurons to full agonists and the $\hat{1}\pm7$ -selective partial agonists, 4OH-GTS-21 and S 24795. Neuropharmacology, 2009, 56, 821-830.	4.1	24
80	Tricks of Perspective: Insights and Limitations to the Study of Macroscopic Currents for the Analysis of nAChR Activation and Desensitization. Journal of Molecular Neuroscience, 2010, 40, 77-86.	2.3	24
81	Allosteric Agonism of α7 Nicotinic Acetylcholine Receptors: Receptor Modulation Outside the Orthosteric Site. Molecular Pharmacology, 2019, 95, 606-614.	2.3	24
82	Tethered Agonist Analogs as Site-Specific Probes for Domains of the Human α7 Nicotinic Acetylcholine Receptor that Differentially Regulate Activation and Desensitization. Molecular Pharmacology, 2010, 78, 1012-1025.	2.3	23
83	Similar activity of mecamylamine stereoisomers in vitro and in vivo. European Journal of Pharmacology, 2013, 720, 264-275.	3.5	23
84	The interaction between alpha 7 nicotinic acetylcholine receptor and nuclear peroxisome proliferator-activated receptor-α represents a new antinociceptive signaling pathway in mice. Experimental Neurology, 2017, 295, 194-201.	4.1	23
85	The α7 nicotinic receptor silent agonist R-47 prevents and reverses paclitaxel-induced peripheral neuropathy in mice without tolerance or altering nicotine reward and withdrawal. Experimental Neurology, 2019, 320, 113010.	4.1	23
86	The α7 nicotinic acetylcholine receptor positive allosteric modulator attenuates lipopolysaccharide-induced activation of hippocampal <i>lîºB</i> and <i>CD11b</i> gene expression in mice. Drug Discoveries and Therapeutics, 2017, 11, 206-211.	1.5	22
87	Selective Inhibition of Acetylcholine-Evoked Responses of α7 Neuronal Nicotinic Acetylcholine Receptors by Novel tris- and tetrakis-Azaaromatic Quaternary Ammonium Antagonists. Molecular Pharmacology, 2009, 76, 652-666.	2.3	21
88	Macroscopic and Microscopic Activation of <i>α</i> 7 Nicotinic Acetylcholine Receptors by the Structurally Unrelated Allosteric Agonist-Positive Allosteric Modulators (ago-PAMs) B-973B and GAT107. Molecular Pharmacology, 2019, 95, 43-61.	2.3	21
89	Differential Modulation of Brain Nicotinic Acetylcholine Receptor Function by Cytisine, Varenicline, and Two Novel Bispidine Compounds: Emergent Properties of a Hybrid Molecule. Journal of Pharmacology and Experimental Therapeutics, 2013, 347, 424-437.	2.5	20
90	Sensitivity to Voltage-Independent Inhibition Determined by Pore-Lining Region of the Acetylcholine Receptor. Biophysical Journal, 1998, 74, 2306-2317.	0.5	19

#	Article	IF	CITATIONS
91	2-(2-Piperidyl)- and 2-(2-Pyrrolidyl)chromans as Nicotine Agonists:Â Synthesis and Preliminary Pharmacological Characterization. Journal of Medicinal Chemistry, 2001, 44, 4704-4715.	6.4	19
92	Septal innervation regulates the function of α7 nicotinic receptors in CA1 hippocampal interneurons. Experimental Neurology, 2005, 195, 342-352.	4.1	19
93	Inhibition of Wild-Type and Mutant Neuronal Nicotinic Acetylcholine Receptors by Local Anesthetics. Molecular Pharmacology, 2001, 60, 1365-1374.	2.3	17
94	The Antinociceptive and Anti-Inflammatory Properties of the <i>α</i> 7 nAChR Weak Partial Agonist <i>p</i> -CF ₃ <i>N</i> , <i>N</i> -diethyl- <i>N</i> ′-phenylpiperazine. Journal of Pharmacology and Experimental Therapeutics, 2018, 367, 203-214.	2.5	17
95	Rhesus monkey α7 nicotinic acetylcholine receptors: Comparisons to human α7 receptors expressed in Xenopus oocytes. European Journal of Pharmacology, 2005, 524, 11-18.	3.5	16
96	Quinuclidines as selective agonists for alpha-7 nicotinic acetylcholine receptors. Bioorganic and Medicinal Chemistry Letters, 2007, 17, 1520-1522.	2.2	16
97	The 3,7-diazabicyclo[3.3.1]nonane scaffold for subtype selective nicotinic acetylcholine receptor ligands. Part 2: Carboxamide derivatives with different spacer motifs. Bioorganic and Medicinal Chemistry, 2013, 21, 7309-7329.	3.0	16
98	Identification of α7 Nicotinic Acetylcholine Receptor Silent Agonists Based on the Spirocyclic Quinuclidineâ€i ² â€isoxazoline Scaffold: Synthesis and Electrophysiological Evaluation. ChemMedChem, 2017, 12, 1335-1348.	3.2	15
99	Pharmacological modulation of the α7 nicotinic acetylcholine receptor in a mouse model of mecamylamine-precipitated nicotine withdrawal. Psychopharmacology, 2018, 235, 1897-1905.	3.1	15
100	The α7 nicotinic acetylcholine receptor positive allosteric modulator prevents lipopolysaccharide-induced allodynia, hyperalgesia and TNF-α in the hippocampus in mice. Pharmacological Reports, 2019, 71, 1168-1176.	3.3	15
101	Betel Nut (areca) and Smokeless Tobacco Use in Myanmar. Substance Use and Misuse, 2020, 55, 1385-1394.	1.4	15
102	Cholinergic Receptors and Addiction. Current Topics in Behavioral Neurosciences, 2020, 45, 123-151.	1.7	15
103	In vivo characterization of a novel inhibitor of CNS nicotinic receptors. European Journal of Pharmacology, 2005, 521, 43-48.	3.5	14
104	The characterization of a novel rigid nicotine analog with α7-selective nAChR agonist activity and modulation of agonist properties by boron inclusion. Bioorganic and Medicinal Chemistry Letters, 2005, 15, 3874-3880.	2.2	14
105	Perspectives on areca nut with some global implications: Symposium report. Translational Research in Oral Oncology, 2018, 3, 2057178X1881406.	3.3	14
106	B-973, a Novel α7 nAChR Ago-PAM: Racemic and Asymmetric Synthesis, Electrophysiological Studies, and <i>in Vivo</i> Evaluation. ACS Medicinal Chemistry Letters, 2018, 9, 1144-1148.	2.8	14
107	The 3,7-diazabicyclo[3.3.1]nonane scaffold for subtype selective nicotinic acetylcholine receptor (nAChR) ligands. Part 1: The influence of different hydrogen bond acceptor systems on alkyl and (hetero)aryl substituents. Bioorganic and Medicinal Chemistry, 2013, 21, 7283-7308.	3.0	12
108	Synthesis, Pharmacological Characterization, and Structure–Activity Relationships of Noncanonical Selective Agonists for α7 nAChRs. Journal of Medicinal Chemistry, 2019, 62, 10376-10390.	6.4	12

#	Article	IF	CITATIONS
109	Design, synthesis, and electrophysiological evaluation of NS6740 derivatives: Exploration of the structure-activity relationship for alpha7 nicotinic acetylcholine receptor silent activation. European Journal of Medicinal Chemistry, 2020, 205, 112669.	5.5	12
110	Differing Activity Profiles of the Stereoisomers of 2,3,5,6TMP-TQS, a Putative Silent Allosteric Modulator of <i>α</i> 7 nAChR. Molecular Pharmacology, 2020, 98, 292-302.	2.3	12
111	Enhanced Inhibition of a Mutant Neuronal Nicotinic Acetylcholine Receptor by Agonists: Protection of Function by (E)-N-Methyl-4-(3-pyridinyl)-3-butene-1-amine (TC-2403). Journal of Pharmacology and Experimental Therapeutics, 2002, 301, 765-773.	2.5	11
112	NS6740, an α7 nicotinic acetylcholine receptor silent agonist, disrupts hippocampal synaptic plasticity. Neuroscience Letters, 2018, 677, 6-13.	2.1	11
113	Comparison of the Anti-inflammatory Properties of Two Nicotinic Acetylcholine Receptor Ligands, Phosphocholine and pCF3-diEPP. Frontiers in Cellular Neuroscience, 2022, 16, 779081.	3.7	11
114	Discovery of a novel nicotinic receptor antagonist for the treatment of nicotine addiction: 1-(3-Picolinium)-12-triethylammonium-dodecane dibromide (TMPD). Biochemical Pharmacology, 2007, 74, 1271-1282.	4.4	10
115	Sulfonium as a Surrogate for Ammonium: A New α7 Nicotinic Acetylcholine Receptor Partial Agonist with Desensitizing Activity. Journal of Medicinal Chemistry, 2017, 60, 7928-7934.	6.4	10
116	Heteromeric Neuronal Nicotinic Acetylcholine Receptors with Mutant <i>β</i> Subunits Acquire Sensitivity to <i>α</i> 7-Selective Positive Allosteric Modulators. Journal of Pharmacology and Experimental Therapeutics, 2019, 370, 252-268.	2.5	10
117	Allosterically Potentiated <i>α</i> 7 Nicotinic Acetylcholine Receptors: Reduced Calcium Permeability and Current-Independent Control of Intracellular Calcium. Molecular Pharmacology, 2020, 98, 695-709.	2.3	10
118	Nicotinic Acetylcholine Receptor Accessory Subunits Determine the Activity Profile of Epibatidine Derivatives. Molecular Pharmacology, 2020, 98, 328-342.	2.3	10
119	Selective Agonists and Antagonists of α9 Versus α7 Nicotinic Acetylcholine Receptors. ACS Chemical Neuroscience, 2022, 13, 624-637.	3.5	10
120	Novel 5-(quinuclidin-3-ylmethyl)-1,2,4-oxadiazoles to investigate the activation of the α7 nicotinic acetylcholine receptor subtype: Synthesis and electrophysiological evaluation. European Journal of Medicinal Chemistry, 2018, 160, 207-228.	5.5	9
121	Potential State-selective Hydrogen Bond Formation Can Modulate Activation and Desensitization of the α7 Nicotinic Acetylcholine Receptor. Journal of Biological Chemistry, 2012, 287, 21957-21969.	3.4	8
122	Betel Quid, Health, and Addiction. Substance Use and Misuse, 2020, 55, 1528-1532.	1.4	8
123	In Silico Modeling of the α7 Nicotinic Acetylcholine Receptor: New Pharmacological Challenges Associated with Multiple Modes of Signaling. Mini-Reviews in Medicinal Chemistry, 2020, 20, 841-864.	2.4	7
124	Effects of α7 Nicotinic Acetylcholine Receptor Positive Allosteric Modulator on BDNF, NKCC1 and KCC2 Expression in the Hippocampus following Lipopolysaccharide-induced Allodynia and Hyperalgesia in a Mouse Model of Inflammatory Pain. CNS and Neurological Disorders - Drug Targets, 2020, 19, 366-377.	1.4	7
125	The Allosteric Activation of $\hat{l}\pm 7$ nAChR by $\hat{l}\pm$ -Conotoxin MrIC Is Modified by Mutations at the Vestibular Site. Toxins, 2021, 13, 555.	3.4	5
126	Coffee and cigarettes: Modulation of high and low sensitivity α4β2 nicotinic acetylcholine receptors by n-MP, a biomarker of coffee consumption. Neuropharmacology, 2022, 216, 109173.	4.1	5

#	Article	IF	CITATIONS
127	Modulation of spontaneous hippocampal synaptic events with 5-hydroxyindole, 4OH-GTS-21, and rAAV-mediated 1±7 nicotinic receptor gene transfer. Brain Research, 2008, 1203, 51-60.	2.2	4
128	Synthesis of H-bonding probes of $\hat{l}\pm7$ nAChR agonist selectivity. Bioorganic and Medicinal Chemistry Letters, 2009, 19, 474-476.	2.2	4
129	Stable desensitization of α7 nicotinic acetylcholine receptors by NS6740 requires interaction with S36 in the orthosteric agonist binding site. European Journal of Pharmacology, 2021, 905, 174179.	3.5	4
130	Point-to-point ligand–receptor interactions across the subunit interface modulate the induction and stabilization of conformational states of alpha7 nAChR by benzylidene anabaseines. Biochemical Pharmacology, 2013, 85, 817-828.	4.4	3
131	Design, synthesis, and biological activity of 5′-phenyl-1,2,5,6-tetrahydro-3,3′-bipyridine analogues as potential antagonists of nicotinic acetylcholine receptors. Bioorganic and Medicinal Chemistry Letters, 2017, 27, 4350-4353.	2.2	2
132	Sulfonium Ligands of the \hat{l} ±7 nAChR. Molecules, 2021, 26, 5643.	3.8	2
133	α4β2 Nicotinic acetylcholine receptors, willing if able. British Journal of Pharmacology, 2010, 160, 1903-1905.	5.4	1
134	Nicotine: Understanding the big picture while also studying the details. Neuropharmacology, 2021, 196, 108715.	4.1	0
135	Nicotinic acetylcholine receptor silent agonists modulate inflammation. FASEB Journal, 2019, 33, lb236.	0.5	0