Bernard Berger

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4534985/publications.pdf

Version: 2024-02-01

		279798	477307
30	5,299	23	29
papers	citations	h-index	g-index
30	30	30	7192
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	The genome sequence of $\langle i \rangle$ Bifidobacterium longum $\langle i \rangle$ reflects its adaptation to the human gastrointestinal tract. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 14422-14427.	7.1	874
2	Calypso: a user-friendly web-server for mining and visualizing microbiome–environment interactions. Bioinformatics, 2017, 33, 782-783.	4.1	627
3	The genome sequence of the probiotic intestinal bacterium Lactobacillus johnsonii NCC 533. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 2512-2517.	7.1	476
4	Oral Phage Therapy of Acute Bacterial Diarrhea With Two Coliphage Preparations: A Randomized Trial in Children From Bangladesh. EBioMedicine, 2016, 4, 124-137.	6.1	370
5	Colonization-Induced Host-Gut Microbial Metabolic Interaction. MBio, 2011, 2, e00271-10.	4.1	342
6	Effect of <i>Lactobacillus rhamnosus </i> CGMCC1.3724 supplementation on weight loss and maintenance in obese men and women. British Journal of Nutrition, 2014, 111, 1507-1519.	2.3	272
7	Dynamics of Infant Gut Microbiota Are Influenced by Delivery Mode and Gestational Duration and Are Associated with Subsequent Adiposity. MBio, 2015, 6, .	4.1	271
8	Safety analysis of a Russian phage cocktail: From MetaGenomic analysis to oral application in healthy human subjects. Virology, 2013, 443, 187-196.	2.4	211
9	Human Milk Oligosaccharides: 2′-Fucosyllactose (2′-FL) and Lacto-N-Neotetraose (LNnT) in Infant Formula. Nutrients, 2018, 10, 1161.	4.1	208
10	Oral T4-like phage cocktail application to healthy adult volunteers from Bangladesh. Virology, 2012, 434, 222-232.	2.4	201
11	Oral supplementation with probiotics in very-low-birth-weight preterm infants: a randomized, double-blind, placebo-controlled trial. American Journal of Clinical Nutrition, 2009, 89, 1828-1835.	4.7	182
12	The Mouse Microbiome Is Required for Sex-Specific Diurnal Rhythms of Gene Expression and Metabolism. Cell Metabolism, 2019, 29, 362-382.e8.	16.2	178
13	Identification of Genes Associated with the Long-Gut-Persistence Phenotype of the Probiotic <i>Lactobacillus johnsonii</i> Strain NCC533 Using a Combination of Genomics and Transcriptome Analysis. Journal of Bacteriology, 2008, 190, 3161-3168.	2.2	163
14	Investigation of the intestinal microbiota in preterm infants using different methods. Anaerobe, 2010, 16, 362-370.	2.1	118
15	Similarity and Differences in the Lactobacillus acidophilus Group Identified by Polyphasic Analysis and Comparative Genomics. Journal of Bacteriology, 2007, 189, 1311-1321.	2.2	115
16	Oral application of <scp><i>E</i></scp> <i>scherichia coli</i> bacteriophage: safety tests in healthy and diarrheal children from <scp>B</scp> angladesh. Environmental Microbiology, 2017, 19, 237-250.	3.8	105
17	Linking Human Milk Oligosaccharides, Infant Fecal Community Types, and Later Risk To Require Antibiotics. MBio, 2020, 11, .	4.1	98
18	Nasopharyngeal Microbiota in Healthy Children and Pneumonia Patients. Journal of Clinical Microbiology, 2014, 52, 1590-1594.	3.9	86

#	Article	IF	CITATIONS
19	Rate of establishing the gut microbiota in infancy has consequences for future health. Gut Microbes, 2015, 6, 321-325.	9.8	82
20	Gene Expression of Commensal <i>Lactobacillus johnsonii</i> Strain NCC533 during In Vitro Growth and in the Murine Gut. Journal of Bacteriology, 2007, 189, 8109-8119.	2.2	62
21	Integration and Distribution of Lactobacillus johnsonii Prophages. Journal of Bacteriology, 2003, 185, 4603-4608.	2.2	54
22	Bangladeshi children with acute diarrhoea show faecal microbiomes with increased <i>Streptococcus</i> abundance, irrespective of diarrhoea aetiology. Environmental Microbiology, 2018, 20, 2256-2269.	3.8	33
23	Characterization of a novel Lactobacillus species closely related to Lactobacillus johnsonii using a combination of molecular and comparative genomics methods. BMC Genomics, 2010, 11, 504.	2.8	29
24	Infant Formula With a Specific Blend of Five Human Milk Oligosaccharides Drives the Gut Microbiota Development and Improves Gut Maturation Markers: A Randomized Controlled Trial. Frontiers in Nutrition, 0, 9, .	3.7	26
25	Early Effect of Supplemented Infant Formulae on Intestinal Biomarkers and Microbiota: A Randomized Clinical Trial. Nutrients, 2020, 12, 1481.	4.1	23
26	Human Milk Oligosaccharide-Stimulated Bifidobacterium Species Contribute to Prevent Later Respiratory Tract Infections. Microorganisms, 2021, 9, 1939.	3.6	20
27	Safety and efficacy of a probiotic-containing infant formula supplemented with 2'-fucosyllactose: a double-blind randomized controlled trial. Nutrition Journal, 2022, 21, 11.	3.4	20
28	The Role of Prophage for Genome Diversification within a Clonal Lineage of Lactobacillus johnsonii: Characterization of the Defective Prophage LJ771. Journal of Bacteriology, 2008, 190, 5806-5813.	2.2	19
29	Term infant formula supplemented with milk-derived oligosaccharides shifts the gut microbiota closer to that of human milk-fed infants and improves intestinal immune defense: a randomized controlled trial. American Journal of Clinical Nutrition, 2022, 115, 142-153.	4.7	19
30	Antibiotic Treatment Leads to Fecal Escherichia coli and Coliphage Expansion in Severely Malnourished Diarrhea Patients. Cellular and Molecular Gastroenterology and Hepatology, 2018, 5, 458-460.e6.	4.5	15