Andre G Skirtach

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4534979/publications.pdf

Version: 2024-02-01

217 papers

13,368 citations

63 h-index 26548 107 g-index

226 all docs 226 docs citations

times ranked

226

13035 citing authors

#	Article	IF	CITATIONS
1	The influence of Ca/Mg ratio on autogelation of hydrogel biomaterials with bioceramic compounds. Materials Science and Engineering C, 2022, 133, 112632.	3.8	4
2	Modification of Surfaces with Vaterite CaCO3 Particles. Micromachines, 2022, 13, 473.	1.4	14
3	Hard, Soft, and Hard-and-Soft Drug Delivery Carriers Based on CaCO3 and Alginate Biomaterials: Synthesis, Properties, Pharmaceutical Applications. Pharmaceutics, 2022, 14, 909.	2.0	29
4	Antiproliferative activity of Dioclea violacea lectin in CaCO3 particles on cancer cells after controlled release. Journal of Materials Science, 2022, 57, 8854-8868.	1.7	5
5	Passive antifouling and active self-disinfecting antiviral surfaces. Chemical Engineering Journal, 2022, 446, 137048.	6.6	46
6	Hybrid lanthanide-doped rattle-type thermometers for theranostics. Journal of Materials Chemistry C, 2022, 10, 10574-10585.	2.7	2
7	Surface enhanced Raman scattering (SERS)-active bacterial detection by Layer-by-Layer (LbL) assembly all-nanoparticle microcapsules. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 650, 129547.	2.3	8
8	Surface functionalization of chitosan as a coating material for orthopaedic applications: A comprehensive review. Carbohydrate Polymers, 2021, 255, 117487.	5.1	58
9	Hydrothermal synthesis of barium titanate nano/microrods and particle agglomerates using a sodium titanate precursor. Ceramics International, 2021, 47, 8904-8914.	2.3	17
10	Calcium carbonate particles: synthesis, temperature and time influence on the size, shape, phase, and their impact on cell hydroxyapatite formation. Journal of Materials Chemistry B, 2021, 9, 8308-8320.	2.9	20
11	A lanthanide-functionalized covalent triazine framework as a physiological molecular thermometer. Journal of Materials Chemistry C, 2021, 9, 6436-6444.	2.7	12
12	Carbon Nanotubes Transform Soft Gellan Gum Hydrogels into Hybrid Organic–Inorganic Coatings with Excellent Cell Growth Capability. Journal of Carbon Research, 2021, 7, 18.	1.4	3
13	Ultra-sensitive slot-waveguide-enhanced Raman spectroscopy for aqueous solutions of non-polar compounds using a functionalized silicon nitride photonic integrated circuit. Optics Letters, 2021, 46, 1153.	1.7	7
14	Piezoelectric hybrid scaffolds mineralized with calcium carbonate for tissue engineering: Analysis of local enzyme and small-molecule drug delivery, cell response and antibacterial performance. Materials Science and Engineering C, 2021, 122, 111909.	3.8	22
15	Fabrication and Impact of Fouling-Reducing Temperature-Responsive POEGMA Coatings with Embedded CaCO3 Nanoparticles on Different Cell Lines. Materials, 2021, 14, 1417.	1.3	24
16	Luminescent PMMA Films and PMMA@SiO ₂ Nanoparticles with Embedded Ln ³⁺ Complexes for Highly Sensitive Optical Thermometers in the Physiological Temperature Range**. Chemistry - A European Journal, 2021, 27, 6479-6488.	1.7	11
17	Efficient long-range conduction in cable bacteria through nickel protein wires. Nature Communications, 2021, 12, 3996.	5.8	32
18	Nanofibrillar Hydrogels by Temperature Driven Selfâ€Assembly: New Structures for Cell Growth and Their Biological and Medical Implications. Advanced Materials Interfaces, 2021, 8, 2002202.	1.9	12

#	Article	IF	Citations
19	Nanofibrillar Hydrogels by Temperature Driven Selfâ€Assembly: New Structures for Cell Growth and Their Biological and Medical Implications (Adv. Mater. Interfaces 15/2021). Advanced Materials Interfaces, 2021, 8, 2170085.	1.9	0
20	Deep learning with digital holographic microscopy discriminates apoptosis and necroptosis. Cell Death Discovery, 2021, 7, 229.	2.0	28
21	Encapsulation of cells in gold nanoparticle functionalized hybrid Layer-by-Layer (LbL) hybrid shells – Remote effect of laser light. Applied Surface Science Advances, 2021, 5, 100111.	2.9	12
22	The type-1 ribosome-inactivating protein OsRIP1 triggers caspase-independent apoptotic-like death in HeLa cells. Food and Chemical Toxicology, 2021, 157, 112590.	1.8	4
23	Potential of poly(alkylene terephthalate)s to control endothelial cell adhesion and viability. Materials Science and Engineering C, 2021, 129, 112378.	3.8	10
24	Enhanced piezoresponse and surface electric potential of hybrid biodegradable polyhydroxybutyrate scaffolds functionalized with reduced graphene oxide for tissue engineering. Nano Energy, 2021, 89, 106473.	8.2	28
25	Osteogenic Capability of Vateriteâ€Coated Nonwoven Polycaprolactone Scaffolds for In Vivo Bone Tissue Regeneration. Macromolecular Bioscience, 2021, 21, e2100266.	2.1	21
26	Mesoporous One-Component Gold Microshells as 3D SERS Substrates. Biosensors, 2021, 11, 380.	2.3	5
27	Hybrid NaYF4:Er,Yb@NaYF4@nano-MOF@AuNPs@LB composites for Yb3+-Er3+ physiological thermometry. Physica B: Condensed Matter, 2021, 626, 413453.	1.3	9
28	Bioactivity of catalase loaded into vaterite CaCO3 crystals via adsorption and co-synthesis. Materials and Design, 2020, 185, 108223.	3.3	36
29	Discriminating Bacterial Phenotypes at the Population and Singleâ€Cell Level: A Comparison of Flow Cytometry and Raman Spectroscopy Fingerprinting. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2020, 97, 713-726.	1.1	16
30	Water-Stable Plasma-Polymerized <i>N</i> , <i>N</i> -Dimethylacrylamide Coatings to Control Cellular Adhesion. ACS Applied Materials & Samp; Interfaces, 2020, 12, 2116-2128.	4.0	19
31	Effects of fibrillin mutations on the behavior of heart muscle cells in Marfan syndrome. Scientific Reports, 2020, 10, 16756.	1.6	7
32	Diazonium chemistry surface treatment of piezoelectric polyhydroxybutyrate scaffolds for enhanced osteoblastic cell growth. Applied Materials Today, 2020, 20, 100758.	2.3	23
33	AFM Analysis Enables Differentiation between Apoptosis, Necroptosis, and Ferroptosis in Murine Cancer Cells. IScience, 2020, 23, 101816.	1.9	41
34	Nanoparticles in Polyelectrolyte Multilayer Layer-by-Layer (LbL) Films and Capsules—Key Enabling Components of Hybrid Coatings. Coatings, 2020, 10, 1131.	1.2	43
35	Vaccination with early ferroptotic cancer cells induces efficient antitumor immunity. , 2020, 8, e001369.		220
36	Hybrid functional materials for tissue engineering: synthesis, in vivo drug release and SERS effect. Journal of Physics: Conference Series, 2020, 1461, 012150.	0.3	3

#	Article	IF	Citations
37	Modulating the crystallization of phytosterols with monoglycerides in the binary mixture systems: mixing behavior and eutectic formation. Chemistry and Physics of Lipids, 2020, 230, 104912.	1.5	7
38	Colloids-at-surfaces: Physicochemical approaches for facilitating cell adhesion on hybrid hydrogels. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 603, 125185.	2.3	14
39	Temperature Window for Encapsulation of an Enzyme into Thermally Shrunk, CaCO 3 Templated Polyelectrolyte Multilayer Capsules. Macromolecular Bioscience, 2020, 20, 2000081.	2.1	19
40	Identification and Analysis of Key Parameters for the Ossification on Particle Functionalized Composites Hydrogel Materials. ACS Applied Materials & Samp; Interfaces, 2020, 12, 38862-38872.	4.0	17
41	Visible and NIR Upconverting Er ³⁺ â€"Yb ³⁺ Luminescent Nanorattles and Other Hybrid PMOâ€Inorganic Structures for In Vivo Nanothermometry. Advanced Functional Materials, 2020, 30, 2003101.	7.8	83
42	Polymer- and Hybrid-Based Biomaterials for Interstitial, Connective, Vascular, Nerve, Visceral and Musculoskeletal Tissue Engineering. Polymers, 2020, 12, 620.	2.0	62
43	Enhancement of Biomimetic Enzymatic Mineralization of Gellan Gum Polysaccharide Hydrogels by Plant-Derived Gallotannins. International Journal of Molecular Sciences, 2020, 21, 2315.	1.8	12
44	Lanthanide-Grafted Bipyridine Periodic Mesoporous Organosilicas (BPy-PMOs) for Physiological Range and Wide Temperature Range Luminescence Thermometry. ACS Applied Materials & (Interfaces, 2020, 12, 13540-13550.	4.0	44
45	Classification of analytics, sensorics, and bioanalytics with polyelectrolyte multilayer capsules. Analytical and Bioanalytical Chemistry, 2020, 412, 5015-5029.	1.9	15
46	Inter-protein interactions govern protein loading into porous vaterite CaCO ₃ crystals. Physical Chemistry Chemical Physics, 2020, 22, 9713-9722.	1.3	19
47	Alkaline Phosphatase Delivery System Based on Calcium Carbonate Carriers for Acceleration of Ossification. ACS Applied Bio Materials, 2020, 3, 2986-2996.	2.3	36
48	Cells-Grab-on Particles: A Novel Approach to Control Cell Focal Adhesion on Hybrid Thermally Annealed Hydrogels. ACS Biomaterials Science and Engineering, 2020, 6, 3933-3944.	2.6	31
49	Meshesâ€toâ€Fibrils Transition of Gellan Gum Hydrogel Architecture by Thermal Annealing. Macromolecular Materials and Engineering, 2020, 305, 2000308.	1.7	3
50	Waveguide-based surface-enhanced Raman spectroscopy detection of protease activity using non-natural aromatic amino acids. Biomedical Optics Express, 2020, 11, 4800.	1.5	8
51	Multiplex volatile organic compound Raman sensing with nanophotonic slot waveguides functionalized with a mesoporous enrichment layer. Optics Letters, 2020, 45, 447.	1.7	17
52	Towards SERS-based multiplexed monitoring of protease activity using non-natural aromatic amino acids. EPJ Web of Conferences, 2020, 238, 04001.	0.1	0
53	Waveguide-based Detection of Protease Activity using Surface-Enhanced Raman Spectroscopy. , 2020, , .		0
54	Ultra-sensitive silicon nitride waveguide-enhanced Raman spectroscopy for aqueous solutions of organic compounds. , 2020, , .		0

#	Article	IF	Citations
55	Lactoferrin translocates to the nucleus of bovine rectal epithelial cells in the presence of Escherichia coli O157:H7. Veterinary Research, 2019, 50, 75.	1.1	7
56	Improved Label-Free Identification of Individual Exosome-like Vesicles with Au@Ag Nanoparticles as SERS Substrate. ACS Applied Materials & Interfaces, 2019, 11, 39424-39435.	4.0	62
57	Comparison of Free-Space and Waveguide-Based SERS Platforms. Nanomaterials, 2019, 9, 1401.	1.9	20
58	Controlled Deposition of Nanosize and Microsize Particles by Spin-Casting. Langmuir, 2019, 35, 3404-3412.	1.6	13
59	The Future of Layer-by-Layer Assembly: A Tribute to <i>ACS Nano</i> Associate Editor Helmuth Möhwald. ACS Nano, 2019, 13, 6151-6169.	7.3	211
60	Piezoelectric 3-D Fibrous Poly(3-hydroxybutyrate)-Based Scaffolds Ultrasound-Mineralized with Calcium Carbonate for Bone Tissue Engineering: Inorganic Phase Formation, Osteoblast Cell Adhesion, and Proliferation. ACS Applied Materials & Diterfaces, 2019, 11, 19522-19533.	4.0	88
61	Hybrids of Polymeric Capsules, Lipids, and Nanoparticles: Thermodynamics and Temperature Rise at the Nanoscale and Emerging Applications. Langmuir, 2019, 35, 8574-8583.	1.6	33
62	Hierarchy of Hybrid Materials—The Place of Inorganics-in-Organics in it, Their Composition and Applications. Frontiers in Chemistry, 2019, 7, 179.	1.8	172
63	Coculturing Bacteria Leads to Reduced Phenotypic Heterogeneities. Applied and Environmental Microbiology, 2019, 85, .	1.4	37
64	Hybrids of Polymer Multilayers, Lipids, and Nanoparticles: Mimicking the Cellular Microenvironment. Langmuir, 2019, 35, 8565-8573.	1.6	27
65	Magnetic and silver nanoparticle functionalized calcium carbonate particlesâ€"Dual functionality of versatile, movable delivery carriers which can surface-enhance Raman signals. Journal of Applied Physics, 2019, 126, .	1.1	27
66	The effect of hybrid coatings based on hydrogel, biopolymer and inorganic components on the corrosion behavior of titanium bone implants. Journal of Materials Chemistry B, 2019, 7, 6778-6788.	2.9	16
67	Pectin-bioactive glass self-gelling, injectable composites with high antibacterial activity. Carbohydrate Polymers, 2019, 205, 427-436.	5.1	39
68	High index contrast photonic platforms for on-chip Raman spectroscopy. Optics Express, 2019, 27, 23067.	1.7	37
69	Polycaprolactone-Based, Porous CaCO3 and Ag Nanoparticle Modified Scaffolds as a SERS Platform With Molecule-Specific Adsorption. Frontiers in Chemistry, 2019, 7, 888.	1.8	16
70	Waveguide-Enhanced Raman Spectroscopy Using a Mesoporous Silica Sorbent Layer for Volatile Organic Compound (VOC) Sensing. , 2019, , .		0
71	Raman and quantitative-phase microscope with counter-propagating beams demonstrated on HeLa cells. OSA Continuum, 2019, 2, 797.	1.8	2
72	Hot-melt Preparation of a Non-biodegradable Peptide Implant: A Proof of Principle. Protein and Peptide Letters, 2019, 26, 691-701.	0.4	0

#	Article	IF	CITATIONS
73	Novel injectable gellan gum hydrogel composites incorporating Zn- and Sr-enriched bioactive glass microparticles: High-resolution X-ray microcomputed tomography, antibacterial and in vitro testing. Journal of Tissue Engineering and Regenerative Medicine, 2018, 12, 1313-1326.	1.3	31
74	Synergistic interactions between lecithin and fruit wax in oleogel formation. Food and Function, 2018, 9, 1755-1767.	2.1	91
75	Mineralization of gellan gum hydrogels with calcium and magnesium carbonates by alternate soaking in solutions of calcium/magnesium and carbonate ion solutions. Journal of Tissue Engineering and Regenerative Medicine, 2018, 12, 1825-1834.	1.3	18
76	The mechanism of catalase loading into porous vaterite CaCO ₃ crystals by co-synthesis. Physical Chemistry Chemical Physics, 2018, 20, 8822-8831.	1.3	53
77	Novel selfâ€gelling injectable hydrogel/alphaâ€tricalcium phosphate composites for bone regeneration: Physiochemical and microcomputer tomographical characterization. Journal of Biomedical Materials Research - Part A, 2018, 106, 822-828.	2.1	36
78	Hybrid PCL/CaCO3 scaffolds with capabilities of carrying biologically active molecules: Synthesis, loading and in vivo applications. Materials Science and Engineering C, 2018, 85, 57-67.	3.8	48
79	Phytase-mediated enzymatic mineralization of chitosan-enriched hydrogels. Materials Letters, 2018, 214, 186-189.	1.3	4
80	Application of whey protein isolate in bone regeneration: Effects on growth and osteogenic differentiation of bone-forming cells. Journal of Dairy Science, 2018, 101, 28-36.	1.4	40
81	4Ϊ€ Microscopy Immune to Sample-Induced Dephasing. , 2018, , .		0
82	Whey Protein Complexes with Green Tea Polyphenols: Antimicrobial, Osteoblast-Stimulatory, and Antioxidant Activities. Cells Tissues Organs, 2018, 206, 106-118.	1.3	15
83	Effect of low-temperature plasma treatment of electrospun polycaprolactone fibrous scaffolds on calcium carbonate mineralisation. RSC Advances, 2018, 8, 39106-39114.	1.7	35
84	Plasmonic Hybrid Biocomposite as an Effective Substrate for Detection of Biomolecules by Surface-Enhanced Raman Spectroscopy. Russian Physics Journal, 2018, 61, 1288-1293.	0.2	1
85	Added Value of Microscale Raman Chemical Analysis in Mild Traumatic Brain Injury (TBI): A Comparison with Macroscale MRI. ACS Omega, 2018, 3, 16806-16811.	1.6	8
86	ALD assisted nanoplasmonic slot waveguide for on-chip enhanced Raman spectroscopy. APL Photonics, 2018, 3, .	3.0	35
87	Laser-induced remote release <i>in vivo</i> in <i>C. elegans</i> from novel silver nanoparticles-alginate hydrogel shells. Nanoscale, 2018, 10, 17249-17256.	2.8	34
88	Label-free Raman characterization of bacteria calls for standardized procedures. Journal of Microbiological Methods, 2018, 151, 69-75.	0.7	38
89	Selective Labeling of Individual Neurons in Dense Cultured Networks With Nanoparticle-Enhanced Photoporation. Frontiers in Cellular Neuroscience, 2018, 12, 80.	1.8	23
90	ANN prediction of corrosion behaviour of uncoated and biopolymers coated cp-Titanium substrates. Materials and Design, 2018, 157, 35-51.	3.3	26

#	Article	IF	Citations
91	Transfer of cells with uptaken nanocomposite, magnetite-nanoparticle functionalized capsules with electromagnetic tweezers. Biomaterials Science, 2018, 6, 2219-2229.	2.6	34
92	Nanostructured Biointerfaces Based on Bioceramic Calcium Carbonate/Hydrogel Coatings on Titanium with an Active Enzyme for Stimulating Osteoblasts Growth. Advanced Materials Interfaces, 2018, 5, 1800452.	1.9	41
93	Study of bacterial inner structures with 4Ï€ Raman microscopy. , 2018, , .		O
94	Bioinspired, biomimetic, double-enzymatic mineralization of hydrogels for bone regeneration with calcium carbonate. Materials Letters, 2017, 190, 13-16.	1.3	32
95	Ca:Mg:Zn:CO 3 and Ca:Mg:CO 3 â€"tri- and bi-elemental carbonate microparticles for novel injectable self-gelling hydrogelâ€"microparticle composites for tissue regeneration. Biomedical Materials (Bristol), 2017, 12, 025015.	1.7	11
96	Enzymatic, urease-mediated mineralization of gellan gum hydrogel with calcium carbonate, magnesium-enriched calcium carbonate and magnesium carbonate for bone regeneration applications. Journal of Tissue Engineering and Regenerative Medicine, 2017, 11, 3556-3566.	1.3	31
97	Silver Alginate Hydrogel Micro- and Nanocontainers for Theranostics: Synthesis, Encapsulation, Remote Release, and Detection. ACS Applied Materials & Samp; Interfaces, 2017, 9, 21949-21958.	4.0	60
98	Titanium surface functionalization with coatings of chitosan and polyphenol-rich plant extracts. Materials Letters, 2017, 196, 213-216.	1.3	19
99	Diverse Applications of Nanomedicine. ACS Nano, 2017, 11, 2313-2381.	7.3	976
100	Fast spatial-selective delivery into live cells. Journal of Controlled Release, 2017, 266, 198-204.	4.8	40
101	Gold nanodome SERS platform for label-free detection of protease activity. Faraday Discussions, 2017, 205, 345-361.	1.6	20
102	Release from Polyelectrolyte Multilayer Capsules in Solution and on Polymeric Surfaces. Advanced Materials Interfaces, 2017, 4, 1600273.	1.9	25
103	Temperature rise around nanoparticles. Journal of Thermal Analysis and Calorimetry, 2017, 127, 895-904.	2.0	11
104	On-chip surface-enhanced Raman spectroscopy using nanosphere-lithography patterned antennas on silicon nitride waveguides. Optics Express, 2017, 25, 12926.	1.7	45
105	Polymeric and Lipid Membranesâ€"From Spheres to Flat Membranes and vice versa. Membranes, 2017, 7, 44.	1.4	7
106	Superresolution 4Ï€ Raman microscopy. Optics Letters, 2017, 42, 4410.	1.7	12
107	Nanotriangle Decorated Silicon Nitride Waveguides for Integrated Surface-Enhanced Raman Spectroscopy., 2017,,.		0
108	Organic Adhesion Layer for an Increased Waveguide-Excited Surface-Enhanced Raman Signal., 2017,,.		0

#	Article	IF	Citations
109	Highâ€resolution synchrotron <scp>X</scp> â€ray analysis of bioglassâ€enriched hydrogels. Journal of Biomedical Materials Research - Part A, 2016, 104, 1194-1201.	2.1	17
110	Identification of Individual Exosome-Like Vesicles by Surface Enhanced Raman Spectroscopy. Small, 2016, 12, 3292-3301.	5.2	145
111	Microscope-less lab-on-a-chip Raman spectroscopy of cell-membranes., 2016,,.		1
112	Laser-assisted photoporation: fundamentals, technological advances and applications. Advances in Physics: X, 2016, 1, 596-620.	1.5	47
113	Loading Capacity versus Enzyme Activity in Anisotropic and Spherical Calcium Carbonate Microparticles. ACS Applied Materials & Samp; Interfaces, 2016, 8, 14284-14292.	4.0	74
114	Controlling the Vaterite CaCO ₃ Crystal Pores. Design of Tailor-Made Polymer Based Microcapsules by Hard Templating. Langmuir, 2016, 32, 4229-4238.	1.6	74
115	Cytosolic Delivery of Nanolabels Prevents Their Asymmetric Inheritance and Enables Extended Quantitative in Vivo Cell Imaging. Nano Letters, 2016, 16, 5975-5986.	4.5	49
116	Proteinâ€Containing Multilayer Capsules by Templating on Mesoporous CaCO ₃ Particles: POSTâ€and PREâ€Loading Approaches. Macromolecular Bioscience, 2016, 16, 95-105.	2.1	53
117	Novel injectable, self-gelling hydrogel–microparticle composites for bone regeneration consisting of gellan gum and calcium and magnesium carbonate microparticles. Biomedical Materials (Bristol), 2016, 11, 065011.	1.7	27
118	Lab-on-a-chip Raman sensors outperforming Raman microscopes. , 2016, , .		2
119	The influence of the size and aspect ratio of anisotropic, porous CaCO3 particles on their uptake by cells. Journal of Nanobiotechnology, 2015, 13, 53.	4.2	127
120	Nanophotonic lab-on-a-chip Raman sensors: A sensitivity comparison with confocal Raman microscope., 2015,,.		3
121	From Beetles in Nature to the Laboratory: Actuating Underwater Locomotion on Hydrophobic Surfaces. Langmuir, 2015, 31, 13734-13742.	1.6	22
122	Efficient delivery of quantum dots in live cells by gold nanoparticle mediated photoporation. Proceedings of SPIE, 2015, , .	0.8	2
123	Laser-induced vapor nanobubbles for efficient delivery of macromolecules in live cells. Proceedings of SPIE, 2015, , .	0.8	2
124	Gold nanodome-patterned microchips for intracellular surface-enhanced Raman spectroscopy. Analyst, The, 2015, 140, 8080-8087.	1.7	19
125	Nanodome coins for intracellular surface-enhanced Raman spectroscopy. , 2015, , .		0
126	Optical Heating and Temperature Determination of Core–Shell Gold Nanoparticles and Singleâ€Walled Carbon Nanotube Microparticles. Small, 2015, 11, 1320-1327.	5.2	31

#	Article	IF	Citations
127	Resonant enhancement mechanisms in lab-on-chip Raman spectroscopy on a silicon nitride waveguide platform. , 2014 , , .		O
128	Pharmacological aspects of release from microcapsules â€" from polymeric multilayers to lipid membranes. Current Opinion in Pharmacology, 2014, 18, 129-140.	1.7	21
129	Polymer Brush Gradients by Adjusting the Functional Density Through Temperature Gradient. Advanced Materials Interfaces, 2014, 1, 1300056.	1.9	11
130	Colloidal micro- and nano-particles as templates for polyelectrolyte multilayer capsules. Advances in Colloid and Interface Science, 2014, 207, 253-264.	7. O	108
131	Micropackaging via layer-by-layer assembly: microcapsules and microchamber arrays. International Materials Reviews, 2014, 59, 224-244.	9.4	49
132	Nanoplasmonically-Induced Defects in Lipid Membrane Monitored by Ion Current: Transient Nanopores versus Membrane Rupture. Nano Letters, 2014, 14, 4273-4279.	4.5	35
133	Macromolecule Loading into Spherical, Elliptical, Starâ€Like and Cubic Calcium Carbonate Carriers. ChemPhysChem, 2014, 15, 2817-2822.	1.0	72
134	Mimicking Bubble Use in Nature: Propulsion of Janus Particles due to Hydrophobicâ€Hydrophilic Interactions. Small, 2014, 10, 2670-2677.	5.2	28
135	Comparison of Gold Nanoparticle Mediated Photoporation: Vapor Nanobubbles Outperform Direct Heating for Delivering Macromolecules in Live Cells. ACS Nano, 2014, 8, 6288-6296.	7.3	157
136	Gold Nanoparticle Coated Silicon Nitride Chips For Intracellular Surface-Enhanced Raman Spectroscopy. , 2014, , .		1
137	Preserving Catalytic Activity and Enhancing Biochemical Stability of the Therapeutic Enzyme Asparaginase by Biocompatible Multilayered Polyelectrolyte Microcapsules. Biomacromolecules, 2013, 14, 4398-4406.	2.6	74
138	Mechanical strength and intracellular uptake of CaCO3-templated LbL capsules composed of biodegradable polyelectrolytes: the influence of the number of layers. Journal of Materials Chemistry B, 2013, 1, 1175.	2.9	51
139	Polyelectrolyte multilayer microcapsules templated on spherical, elliptical and square calcium carbonate particles. Journal of Materials Chemistry B, 2013, 1, 1223.	2.9	87
140	Chemosensors and biosensors based on polyelectrolyte microcapsules containing fluorescent dyes and enzymes. Analytical and Bioanalytical Chemistry, 2013, 405, 1559-1568.	1.9	66
141	Red blood cells and polyelectrolyte multilayer capsules: natural carriers versus polymer-based drug delivery vehicles. Expert Opinion on Drug Delivery, 2013, 10, 47-58.	2.4	59
142	Nanoengineered Colloidal Probes for Ramanâ€based Detection of Biomolecules inside Living Cells. Small, 2013, 9, 351-356.	5.2	53
143	Nanoplasmonic Modification of the Local Morphology, Shape, and Wetting Properties of Nanoflake Microparticles. Langmuir, 2013, 29, 7464-7471.	1.6	11
144	Towards Theranostic Multicompartment Microcapsules: in-situ Diagnostics and Laser-induced Treatment. Theranostics, 2013, 3, 141-151.	4.6	74

#	Article	IF	Citations
145	Controlled enzyme-catalyzed degradation of polymeric capsules templated on CaCO3: Influence of the number of LbL layers, conditions of degradation, and disassembly of multicompartments. Journal of Controlled Release, 2012, 162, 599-605.	4.8	67
146	Control of Cell Adhesion by Mechanical Reinforcement of Soft Polyelectrolyte Films with Nanoparticles. Langmuir, 2012, 28, 7249-7257.	1.6	75
147	Nanoplasmonic smooth silica versus porous calcium carbonate bead biosensors for detection of biomarkers. Annalen Der Physik, 2012, 524, 723-732.	0.9	41
148	Laser-Induced Cell Detachment, Patterning, and Regrowth on Gold Nanoparticle Functionalized Surfaces. ACS Nano, 2012, 6, 9585-9595.	7.3	69
149	Bioapplications of light-sensitive polymer films and capsules assembled using the layer-by-layer technique. Polymer International, 2012, 61, 673-679.	1.6	62
150	Nanoplasmonics for Dual-Molecule Release through Nanopores in the Membrane of Red Blood Cells. ACS Nano, 2012, 6, 4169-4180.	7.3	136
151	Patchiness of Embedded Particles and Film Stiffness Control Through Concentration of Gold Nanoparticles. Advanced Materials, 2012, 24, 1095-1100.	11.1	43
152	Anisotropic multicompartment micro- and nano-capsules produced via embedding into biocompatible PLL/HA films. Chemical Communications, 2011, 47, 2098-2100.	2.2	49
153	Core–Shell Poly(allyamine hydrochloride)-Pyrene Nanorods Decorated with Gold Nanoparticles. Chemistry of Materials, 2011, 23, 4741-4747.	3.2	29
154	Ultrasonic Approach for Formation of Erbium Oxide Nanoparticles with Variable Geometries. Langmuir, 2011, 27, 14472-14480.	1.6	19
155	Encapsulation, release and applications of LbL polyelectrolyte multilayer capsules. Chemical Communications, 2011, 47, 12736.	2.2	202
156	Stimuli-responsive LbL capsules and nanoshells for drug delivery. Advanced Drug Delivery Reviews, 2011, 63, 730-747.	6.6	626
157	Mucosal irritation potential of polyelectrolyte multilayer capsules. Biomaterials, 2011, 32, 1967-1977.	5.7	32
158	Neuron Cells Uptake of Polymeric Microcapsules and Subsequent Intracellular Release. Macromolecular Bioscience, 2011, 11, 848-854.	2.1	42
159	Raman imaging and photodegradation study of phthalocyanine containing microcapsules and coated particles. Journal of Raman Spectroscopy, 2011, 42, 1901-1907.	1.2	19
160	Release Properties of Pressurized Microgel Templated Capsules. Advanced Functional Materials, 2011, 21, 1411-1418.	7.8	38
161	LbL Films as Reservoirs for Bioactive Molecules. Advances in Polymer Science, 2010, , 135-161.	0.4	34
162	IR-light triggered drug delivery from micron-sized polymer biocoatings. Journal of Controlled Release, 2010, 148, e70-e71.	4.8	22

#	Article	IF	Citations
163	Bioâ€interfacesâ€"Interaction of PLL/HA Thick Films with Nanoparticles and Microcapsules. ChemPhysChem, 2010, 11, 822-829.	1.0	50
164	Carbon Nanotubes on Polymeric Microcapsules: Freeâ€Standing Structures and Pointâ€Wise Laser Openings. Advanced Functional Materials, 2010, 20, 3136-3142.	7.8	66
165	Enzyme Reaction in the Pores of CaCO ₃ Particles upon Ultrasound Disruption of Attached Substrateâ€Filled Liposomes. Angewandte Chemie - International Edition, 2010, 49, 8116-8120.	7.2	70
166	Multicompartmental Micro―and Nanocapsules: Hierarchy and Applications in Biosciences. Macromolecular Bioscience, 2010, 10, 465-474.	2.1	90
167	Polymeric microcapsules with light responsive properties for encapsulation and release. Advances in Colloid and Interface Science, 2010, 158, 2-14.	7.0	178
168	Mechanobiology: Correlation Between Mechanical Stability of Microcapsules Studied by AFM and Impact of Cellâ€Induced Stresses. Small, 2010, 6, 2858-2862.	5.2	69
169	Polyelectrolytes: Influence on Evaporative Self-Assembly of Particles and Assembly of Multilayers with Polymers, Nanoparticles and Carbon Nanotubes. Polymers, 2010, 2, 690-708.	2.0	11
170	Nanoparticles on Polyelectrolytes at Low Concentration: Controlling Concentration and Size. Journal of Physical Chemistry C, 2010, 114, 1996-2002.	1.5	70
171	Assembly of Fullerene-Carbon Nanotubes: Temperature Indicator for Photothermal Conversion. Journal of the American Chemical Society, 2010, 132, 8566-8568.	6.6	83
172	Quantification of release from microcapsules upon mechanical deformation with AFM. Soft Matter, 2010, 6, 1879.	1.2	68
173	Salt-induced fusion of microcapsules of polyelectrolytes. Soft Matter, 2010, 6, 4742.	1.2	39
174	Laser-embossing nanoparticles into a polymeric film. Applied Physics Letters, 2009, 94, 093106.	1.5	26
175	Near″R Remote Release from Assemblies of Liposomes and Nanoparticles. Angewandte Chemie - International Edition, 2009, 48, 1807-1809.	7.2	189
176	Controlled Intracellular Release of Peptides from Microcapsules Enhances Antigen Presentation on MHC Class I Molecules. Small, 2009, 5, 2168-2176.	5.2	111
177	Laser-Controllable Coatings for Corrosion Protection. ACS Nano, 2009, 3, 1753-1760.	7.3	144
178	Stimuli-Sensitive Nanotechnology for Drug Delivery. , 2009, , 545-578.		9
179	Assembling polyelectrolytes and porphyrins into hollow capsules with laser-responsive oxidative properties. Journal of Materials Chemistry, 2009, 19, 2226.	6.7	63
180	Polyelectrolyte microcapsules for biomedical applications. Soft Matter, 2009, 5, 282-291.	1.2	276

#	Article	IF	Citations
181	Remote Near-IR Light Activation of a Hyaluronic Acid/Poly(I-lysine) Multilayered Film and Film-Entrapped Microcapsules. ACS Applied Materials & Samp; Interfaces, 2009, 1, 1705-1710.	4.0	69
182	Surface-Supported Multilayers Decorated with Bio-active Material Aimed at Light-Triggered Drug Delivery. Langmuir, 2009, 25, 14037-14043.	1.6	89
183	On the mechanical stability of polymeric microcontainers functionalized with nanoparticles. Soft Matter, 2009, 5, 148-155.	1.2	122
184	Direction specific release from giant microgel-templated polyelectrolyte microcontainers. Soft Matter, 2009, 5, 3927.	1.2	52
185	Nanorods as Wavelengthâ€Selective Absorption Centers in the Visible and Nearâ€Infrared Regions of the Electromagnetic Spectrum. Advanced Materials, 2008, 20, 506-510.	11.1	95
186	Uptake of Colloidal Polyelectrolyteâ€Coated Particles and Polyelectrolyte Multilayer Capsules by Living Cells. Advanced Materials, 2008, 20, 4281-4287.	11.1	170
187	Magnetic/gold nanoparticle functionalized biocompatible microcapsules with sensitivity to laser irradiation. Physical Chemistry Chemical Physics, 2008, 10, 6899.	1.3	119
188	Reversibly Permeable Nanomembranes of Polymeric Microcapsules. Journal of the American Chemical Society, 2008, 130, 11572-11573.	6.6	131
189	Toward Self-Assembly of Nanoparticles on Polymeric Microshells: Near-IR Release and Permeability. ACS Nano, 2008, 2, 1807-1816.	7.3	110
190	Photoactivated Release of Cargo from the Cavity of Polyelectrolyte Capsules to the Cytosol of Cells. Langmuir, 2008, 24, 12517-12520.	1.6	137
191	Multifunctional microcontainers with tuned permeability for delivery and (bio)chemical reactions., 2008,, 45-60.		0
192	<title>Permeability adjustment of polyelectrolyte micro- and nanocapsules by laser irradiation</title> . Proceedings of SPIE, 2007, , .	0.8	2
193	Synthesis of Silver Nanoparticles for Remote Opening of Polyelectrolyte Microcapsules. Langmuir, 2007, 23, 4612-4617.	1.6	66
194	Ultrasound stimulated release and catalysis using polyelectrolyte multilayer capsules. Journal of Materials Chemistry, 2007, 17, 1050-1054.	6.7	129
195	Nanoparticles Distribution Control by Polymers:  Aggregates versus Nonaggregates. Journal of Physical Chemistry C, 2007, 111, 555-564.	1.5	94
196	Remote Control of Bioreactions in Multicompartment Capsules. Advanced Materials, 2007, 19, 3142-3145.	11.1	114
197	Stimuli-Responsive Multilayered Hybrid Nanoparticle/Polyelectrolyte Capsules. Macromolecular Rapid Communications, 2007, 28, 88-95.	2.0	71
198	Stabilization of Silver Nanoparticles by Polyelectrolytes and Poly(ethylene glycol). Macromolecular Rapid Communications, 2007, 28, 848-855.	2.0	91

#	Article	IF	Citations
199	Optically Driven Encapsulation Using Novel Polymeric Hollow Shells Containing an Azobenzene Polymer. Macromolecular Rapid Communications, 2007, 28, 1517-1521.	2.0	64
200	Ultrasound-Triggered Release from Multilayered Capsules. Small, 2007, 3, 804-808.	5.2	129
201	Multifunctionalized Polymer Microcapsules: Novel Tools for Biological and Pharmacological Applications. Small, 2007, 3, 944-955.	5.2	223
202	Combined Atomic Force Microscopy and Optical Microscopy Measurements as a Method To Investigate Particle Uptake by Cells. Small, 2006, 2, 394-400.	5.2	127
203	Preparation of polyelectrolyte microcapsules with silver and gold nanoparticles in a shell and the remote destruction of microcapsules under laser irradiation. Crystallography Reports, 2006, 51, 863-869.	0.1	35
204	Laser-Induced Release of Encapsulated Materials inside Living Cells. Angewandte Chemie - International Edition, 2006, 45, 4612-4617.	7.2	466
205	Nanoengineered Polymer Capsules: Tools for Detection, Controlled Delivery, and Site-Specific Manipulation. Small, 2005, 1, 194-200.	5.2	271
206	The Role of Metal Nanoparticles in Remote Release of Encapsulated Materials. Nano Letters, 2005, 5, 1371-1377.	4.5	533
207	LASER INDUCED ACTIVATION OF MICROCAPSULES CONTAINING NANOPARTICLES AND IR-DYE., 2005, , .		О
208	Remote Activation of Capsules Containing Ag Nanoparticles and IR Dye by Laser Light. Langmuir, 2004, 20, 6988-6992.	1.6	295
209	Automated single-cell sorting system based on optical trapping. Journal of Biomedical Optics, 2001, 6, 14.	1.4	152
210	Analysis of the behaviour of erythrocytes in an optical trapping system. Optics Express, 2000, 7, 533.	1.7	87
211	Measurement of real-time gain gratings in erbium-doped fiber. IEEE Journal of Quantum Electronics, 1999, 35, 39-46.	1.0	5
212	<title>Erbium in photosensitive hybrid organoaluminosilicate sol-gel glasses</title> ., 1997, 2997, 90.		4
213	Amplification of a phase-conjugate signal in a nonlinear absorptive Kerr medium. Optics Letters, 1997, 22, 673.	1.7	1
214	Nondegenerate two-wave mixing in Cr^3+:Er^3+:YAlO_3. Journal of the Optical Society of America B: Optical Physics, 1996, 13, 546.	0.9	9
215	Theory of nondegenerate two-wave mixing in an absorptive Kerr medium. Journal of the Optical Society of America B: Optical Physics, 1996, 13, 2164.	0.9	4
216	Measurement of the nonlinear response in a strongly pumped erbium doped amplifiers for all-optical switching. , 0 , , .		1

 #	Article	IF	CITATIONS
217	Immunogenic Cell Death and Role of Nanomaterials Serving as Therapeutic Vaccine for Personalized Cancer Immunotherapy. Frontiers in Immunology, 0, 13 , .	2.2	19