Federico Martin Serra

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4534509/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Hierarchical Control for DC Microgrids Using an Exact Feedback Controller with Integral Action. Computers, 2022, 11, 22.	3.3	0
2	An IDA-PBC Design with Integral Action for Output Voltage Regulation in an Interleaved Boost Converter for DC Microgrid Applications. Actuators, 2022, 11, 5.	2.3	9
3	Comparison of First- and Second-Order Sliding-Mode Controllers for a DC-DC Dual Active Bridge. IEEE Access, 2022, 10, 40264-40272.	4.2	3
4	Control of a battery charger for electric vehicles with unity power factor. TESEA, Transactions on Energy Systems and Engineering Applications, 2021, 2, 32-44.	0.4	4
5	Stabilization of MT-HVDC grids via passivity-based control and convex optimization. Electric Power Systems Research, 2021, 196, 107273.	3.6	8
6	Control of a DC-DC Dual Active Bridge Converter in DC Microgrids Applications. IEEE Latin America Transactions, 2021, 19, 1261-1269.	1.6	26
7	Voltage Regulation of an Isolated DC Microgrid with a Constant Power Load: A Passivity-based Control Design. Electronics (Switzerland), 2021, 10, 2085.	3.1	13
8	Heuristic Methodology for Planning AC Rural Medium-Voltage Distribution Grids. Energies, 2021, 14, 5141.	3.1	7
9	On the Optimal Selection and Integration of Batteries in DC Grids through a Mixed-Integer Quadratic Convex Formulation. Electronics (Switzerland), 2021, 10, 2339.	3.1	6
10	A Multiple-Reference Complex-Based Controller for Power Converters. IEEE Transactions on Power Electronics, 2021, 36, 14466-14477.	7.9	3
11	Global Optimal Stabilization of MT-HVDC Systems: Inverse Optimal Control Approach. Electronics (Switzerland), 2021, 10, 2819.	3.1	2
12	Sliding mode control of a dc-dc dual active bridge using the generalized space-state averaging description. , 2021, , .		4
13	Adaptive Control of a Single-Phase Grid-Forming for Feeding Unknown Resistive Loads. , 2021, , .		1
14	On the Efficiency in Electrical Networks with AC and DC Operation Technologies: A Comparative Study at the Distribution Stage. Electronics (Switzerland), 2020, 9, 1352.	3.1	37
15	On the nonlinear control of a single-phase current source converter for sinusoidal voltage generation. Journal of Physics: Conference Series, 2020, 1448, 012011.	0.4	0
16	A Second-Order Cone Programming Reformulation of the Economic Dispatch Problem of BESS for Apparent Power Compensation in AC Distribution Networks. Electronics (Switzerland), 2020, 9, 1677.	3.1	19
17	Complex Pole Placement Control for a Three-Phase Voltage Source Converter. , 2020, , .		4
18	Nonlinear Voltage Control for Three-Phase DC-AC Converters in Hybrid Systems: An Application of the PI-PBC Method. Electronics (Switzerland), 2020, 9, 847.	3.1	27

Federico Martin Serra

#	Article	IF	CITATIONS
19	Energy Management on Battery/Ultracapacitor Hybrid Energy Storage System based on Adjustable Bandwidth Filter and Sliding-mode Control. Journal of Energy Storage, 2020, 30, 101569.	8.1	26
20	Direct Power Compensation in AC Distribution Networks with SCES Systems via PI-PBC Approach. Symmetry, 2020, 12, 666.	2.2	10
21	Predictive Power Control for Electric Vehicle Charging Applications. , 2020, , .		3
22	Control Methods for Single-phase Voltage Supply with VSCs to Feed Nonlinear Loads in Rural Areas. Revista De Ingenieria, 2020, 1, 33-47.	2.5	3
23	Complex-Based Controller for a Three-Phase Inverter With an <italic>LCL</italic> Filter Connected to Unbalanced Grids. IEEE Transactions on Power Electronics, 2019, 34, 3899-3909.	7.9	25
24	State of charge monitoring of Li-ion batteries for electric vehicles using GP filtering. Journal of Energy Storage, 2019, 25, 100837.	8.1	4
25	Output Voltage Regulation For dc–dc Buck Converters: a Passivity–Based Pl Design. , 2019, , .		7
26	Economic Dispatch of BESS and Renewable Generators in DC Microgrids Using Voltage-Dependent Load Models. Energies, 2019, 12, 4494.	3.1	33
27	Stability Analysis of Single-Phase Low-Voltage AC Microgrids With Constant Power Terminals. IEEE Transactions on Circuits and Systems II: Express Briefs, 2019, 66, 1212-1216.	3.0	9
28	PBC Approach for SMES Devices in Electric Distribution Networks. IEEE Transactions on Circuits and Systems II: Express Briefs, 2018, 65, 2003-2007.	3.0	22
29	IDA-PBC controller of a DC-DC boost converter for continuous and discontinuous conduction mode. IEEE Latin America Transactions, 2018, 16, 52-58.	1.6	9
30	DERs integration in microgrids using VSCs via proportional feedback linearization control: Supercapacitors and distributed generators. Journal of Energy Storage, 2018, 16, 250-258.	8.1	31
31	Control of an isolated DC microgrid supplying constant power load. , 2018, , .		1
32	Solar Charging Station for Small Electric Vehicles. , 2018, , .		5
33	IDA-PBC control of a DC–AC converter for sinusoidal three-phase voltage generation. International Journal of Electronics, 2017, 104, 93-110.	1.4	29
34	IDA-PBC controller design for grid connected Front End Converters under non-ideal grid conditions. Electric Power Systems Research, 2017, 142, 12-19.	3.6	35
35	IDA-PBC control of an isolated microgrid used as electric vehicle charging station. , 2017, , .		2
36	Estrategia de control para la gestión de la energÃa en un sistema hÃbrido aislado. , 2016, , .		0

16

#	Article	IF	CITATIONS
37	Implementation and Control of a Magnetic Levitation System. IEEE Latin America Transactions, 2016, 14, 2651-2656.	1.6	7
38	IDA-PBC control of a single-phase battery charger for electric vehicles with unity power factor. , 2016, , .		8
39	Application of the modified IDAâ€PBC for shunt active power filters control. International Journal of Circuit Theory and Applications, 2016, 44, 1717-1729.	2.0	8
40	Control strategy for an electric vehicle battery charger with unity power factor. , 2015, , .		0
41	Energy management control strategy for stand-alone photovoltaic system. , 2015, , .		1
42	Control de potencia activa y reactiva instantánea de un GIRB conectado a la Red. , 2014, , .		0
43	Interconnection and damping assignment control of a three-phase front end converter. International Journal of Electrical Power and Energy Systems, 2014, 60, 317-324.	5.5	34
44	Passivity Based Control of a Three-Phase Front End Converter. IEEE Latin America Transactions, 2013, 11, 293-299.	1.6	9
45	Experimental implementation of PSDs. , 2012, , .		1
46	IDA-PBC control of a three-phase front-end converter. , 2012, , .		3
47	Passivity-based control of a three-phase Front End Converter for stand alone wind generation system. , 2012, , .		2
48	IDA - PBC control of shunt active filters for harmonics compensation. , 2012, , .		1
49	Non-linear control of a three-phase front end converter. , 2012, , .		7

50 Comparison of positive sequence detectors for shunt active filter control., 2010,,.