Vladimir Kubyshkin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4534331/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Residue-Specific Exchange of Proline by Proline Analogs in Fluorescent Proteins: How "Molecular Surgery" of the Backbone Affects Folding and Stability. Journal of Visualized Experiments, 2022, , .	0.2	2
2	How To Quantify a Genetic Firewall? A Polarityâ€Based Metric for Genetic Code Engineering. ChemBioChem, 2021, 22, 1268-1284.	1.3	7
3	Multiomics Analysis Provides Insight into the Laboratory Evolution of <i>Escherichia coli</i> toward the Metabolic Usage of Fluorinated Indoles. ACS Central Science, 2021, 7, 81-92.	5.3	27
4	Experimental lipophilicity scale for coded and noncoded amino acid residues. Organic and Biomolecular Chemistry, 2021, 19, 7031-7040.	1.5	11
5	Biochemistry of fluoroprolines: the prospect of making fluorine a bioelement. Beilstein Journal of Organic Chemistry, 2021, 17, 439-460.	1.3	15
6	Remarkably high solvatochromism in the circular dichroism spectra of the polyproline-II conformation: limitations or new opportunities?. Physical Chemistry Chemical Physics, 2021, 23, 26931-26939.	1.3	3
7	Conjugation of Synthetic Polyproline Moietes to Lipid II Binding Fragments of Nisin Yields Active and Stable Antimicrobials. Frontiers in Microbiology, 2020, 11, 575334.	1.5	9
8	Polarity effects in 4-fluoro- and 4-(trifluoromethyl)prolines. Beilstein Journal of Organic Chemistry, 2020, 16, 1837-1852.	1.3	12
9	Xenobiology: A Journey towards Parallel Life Forms. ChemBioChem, 2020, 21, 2228-2231.	1.3	10
10	Anticipating alien cells with alternative genetic codes: away from the alanine world!. Current Opinion in Biotechnology, 2019, 60, 242-249.	3.3	23
11	The Alanine World Model for the Development of the Amino Acid Repertoire in Protein Biosynthesis. International Journal of Molecular Sciences, 2019, 20, 5507.	1.8	23
12	Stabilization of the triple helix in collagen mimicking peptides. Organic and Biomolecular Chemistry, 2019, 17, 8031-8047.	1.5	25
13	Promotion of the collagen triple helix in a hydrophobic environment. Organic and Biomolecular Chemistry, 2019, 17, 2502-2507.	1.5	7
14	Bilayer thickness determines the alignment of model polyproline helices in lipid membranes. Physical Chemistry Chemical Physics, 2019, 21, 22396-22408.	1.3	7
15	Exploring hydrophobicity limits of polyproline helix with oligomeric octahydroindoleâ€2 arboxylic acid. Journal of Peptide Science, 2018, 24, e3076.	0.8	13
16	Transmembrane Polyproline Helix. Journal of Physical Chemistry Letters, 2018, 9, 2170-2174.	2.1	15
17	Synthesis of Multifunctional Spirocyclic Azetidines and Their Application in Drug Discovery. Chemistry - A European Journal, 2018, 24, 5444-5449.	1.7	56
18	Synthesis of a Photoâ€Caged DOPA Derivative by Selective Alkylation of 3,4â€Dihydroxybenzaldehyde. European Journal of Organic Chemistry, 2018, 2018, 2053-2063.	1.2	8

VLADIMIR KUBYSHKIN

#	Article	IF	CITATIONS
19	On universal coding events in protein biogenesis. BioSystems, 2018, 164, 16-25.	0.9	26
20	Comparative effects of trifluoromethyl- and methyl-group substitutions in proline. New Journal of Chemistry, 2018, 42, 13461-13470.	1.4	17
21	Biocatalysis with Unnatural Amino Acids: Enzymology Meets Xenobiology. Angewandte Chemie - International Edition, 2017, 56, 9680-9703.	7.2	164
22	Biokatalyse mit nichtâ€natürlichen Aminosären: Enzymologie trifft Xenobiologie. Angewandte Chemie, 2017, 129, 9810-9835.	1.6	33
23	The Regioselective Synthesis of o-Nitrobenzyl DOPA Derivatives. Synthesis, 2017, 49, 2691-2699.	1.2	11
24	Conformational Plasticity of the Cell-Penetrating Peptide SAP As Revealed by Solid-State 19F-NMR and Circular Dichroism Spectroscopies. Journal of Physical Chemistry B, 2017, 121, 6479-6491.	1.2	15
25	Peptidyl-Prolyl Model Study: How Does the Electronic Effect Influence the Amide Bond Conformation?. Journal of Organic Chemistry, 2017, 82, 8831-8841.	1.7	36
26	Construction of a polyproline structure with hydrophobic exterior using octahydroindole-2-carboxylic acid. Organic and Biomolecular Chemistry, 2017, 15, 619-627.	1.5	23
27	Frontispiece: Selective ¹⁹ F‣abeling of Functionalized Carboxylic Acids with Difluoromethyl Diazomethane (CF ₂ HCHN ₂). Chemistry - A European Journal, 2017, 23, .	1.7	Ο
28	Amide rotation trajectories probed by symmetry. Organic and Biomolecular Chemistry, 2017, 15, 6764-6772.	1.5	12
29	Synthetic alienation of microbial organisms by using genetic code engineering: Why and how?. Biotechnology Journal, 2017, 12, 1600097.	1.8	23
30	Selective ¹⁹ F‣abeling of Functionalized Carboxylic Acids with Difluoromethyl Diazomethane (CF ₂ HCHN ₂). Chemistry - A European Journal, 2017, 23, 13279-13283.	1.7	22
31	Hydrolysis, polarity, and conformational impact of C-terminal partially fluorinated ethyl esters in peptide models. Beilstein Journal of Organic Chemistry, 2017, 13, 2442-2457.	1.3	14
32	<i>cis</i> – <i>trans</i> -Amide isomerism of the 3,4-dehydroproline residue, the â€~unpuckered' proline. Beilstein Journal of Organic Chemistry, 2016, 12, 589-593.	1.3	13
33	Energetic contribution to both acidity and conformational stability in peptide models. New Journal of Chemistry, 2016, 40, 5209-5220.	1.4	28
34	A base promoted multigram synthesis of aminoisoxazoles: valuable building blocks for drug discovery and peptidomimetics. RSC Advances, 2016, 6, 25713-25723.	1.7	30
35	Lipase kinetic enantiomeric resolution of 1-heteroarylethanols. Tetrahedron: Asymmetry, 2016, 27, 341-345.	1.8	8
36	γ-(S)-Trifluoromethyl proline: evaluation as a structural substitute of proline for solid state 19F-NMR peptide studies. Organic and Biomolecular Chemistry, 2015, 13, 3171-3181.	1.5	56

VLADIMIR KUBYSHKIN

#	Article	IF	CITATIONS
37	Synthesis and studies on gem-fluorinated 2-azabicyclo[n.1.0]alkanes. Journal of Fluorine Chemistry, 2015, 175, 73-83.	0.9	20
38	Entropic Contribution of Elongation Factor P to Proline Positioning at the Catalytic Center of the Ribosome. Journal of the American Chemical Society, 2015, 137, 12997-13006.	6.6	88
39	Applying γâ€5ubstituted Prolines in the <i>Foldon</i> Peptide: Polarity Contradicts Preorganization. ChemBioChem, 2015, 16, 403-406.	1.3	14
40	Fluorine-Rich Planetary Environments as Possible Habitats for Life. Life, 2014, 4, 374-385.	1.1	19
41	Controlling Biological Activity with Light: Diaryletheneâ€Containing Cyclic Peptidomimetics. Angewandte Chemie - International Edition, 2014, 53, 3392-3395.	7.2	140
42	Enzymatic resolution of chroman-4-ol and its core analogues with Burkholderia cepacia lipase. Tetrahedron: Asymmetry, 2014, 25, 563-567.	1.8	12
43	A ¹⁹ Fâ€NMR Label to Substitute Polar Amino Acids in Peptides: A CF ₃ â€&ubstituted Analogue of Serine and Threonine. Angewandte Chemie - International Edition, 2013, 52, 1486-1489.	7.2	48
44	Incorporation of labile trans-4,5-difluoromethanoproline into a peptide as a stable label for 19F NMR structure analysis. Journal of Fluorine Chemistry, 2013, 152, 136-143.	0.9	29
45	Incorporation of cis- and trans-4,5-Difluoromethanoprolines into Polypeptides. Organic Letters, 2012, 14, 5254-5257.	2.4	44
46	Synthesis of a Conformationally Rigid Analogue of 2-Aminoadipic Acid ÂContaining an 8-Azabicyclo[3.2.1]octane Skeleton. Synthesis, 2009, 2009, 3327-3331.	1.2	1
47	Synthesis of 7-azabicyclo[2.2.1]heptane-1,4-dicarboxylic acid, a rigid non-chiral analogue of 2-aminoadipic acid. Tetrahedron Letters, 2007, 48, 4061-4063.	0.7	16
48	Application of (4 <i>R</i>)-aminoproline in peptide engineering: conformational bias and pH-responsiveness revisited. New Journal of Chemistry, 0, , .	1.4	0