Cinthia Farina

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4534119/publications.pdf

Version: 2024-02-01

70 papers 6,387 citations

32 h-index 63 g-index

73 all docs

73 docs citations

times ranked

73

8880 citing authors

#	Article	IF	CITATIONS
1	Lessons from S1P receptor targeting in multiple sclerosis. , 2022, 230, 107971.		9
2	JAB1 deletion in oligodendrocytes causes senescence-induced inflammation and neurodegeneration in mice. Journal of Clinical Investigation, 2022, 132, .	3.9	12
3	Astrocytes and Microglia in Stress-Induced Neuroinflammation: The African Perspective. Frontiers in Immunology, 2022, 13, .	2.2	7
4	The phenotypic convergence between microglia and peripheral macrophages during development and neuroinflammation paves the way for new therapeutic perspectives. Neural Regeneration Research, 2021, 16, 635.	1.6	10
5	Reactive astrocyte nomenclature, definitions, and future directions. Nature Neuroscience, 2021, 24, 312-325.	7.1	1,098
6	Dysregulated copper transport in multiple sclerosis may cause demyelination via astrocytes. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	19
7	Convergence between Microglia and Peripheral Macrophages Phenotype during Development and Neuroinflammation. Journal of Neuroscience, 2020, 40, 784-795.	1.7	88
8	Inferring Multiple Sclerosis Stages from the Blood Transcriptome via Machine Learning. Cell Reports Medicine, 2020, 1, 100053.	3.3	18
9	Three Decades of Interferon- \hat{l}^2 in Multiple Sclerosis: Can We Repurpose This Information for the Management of SARS-CoV2 Infection?. Frontiers in Immunology, 2020, 11, 1459.	2.2	17
10	Laquinimod Modulates Human Astrocyte Function and Dampens Astrocyte-Induced Neurotoxicity during Inflammation. Molecules, 2020, 25, 5403.	1.7	12
11	Immune profiling of plasma-derived extracellular vesicles identifies Parkinson disease. Neurology: Neuroimmunology and NeuroInflammation, 2020, 7, .	3.1	45
12	Siponimod (BAF312) Activates Nrf2 While Hampering NFκB in Human Astrocytes, and Protects From Astrocyte-Induced Neurodegeneration. Frontiers in Immunology, 2020, 11, 635.	2.2	48
13	Loss of Circulating CD8+ CD161high T Cells in Primary Progressive Multiple Sclerosis. Frontiers in Immunology, 2019, 10, 1922.	2.2	11
14	A cell type-specific transcriptomic approach to map B cell and monocyte type I interferon-linked pathogenic signatures in Multiple Sclerosis. Journal of Autoimmunity, 2019, 101, 1-16.	3.0	12
15	Cytokines Stimulate the Release of Microvesicles from Myeloid Cells Independently from the P2X7 Receptor/Acid Sphingomyelinase Pathway. Frontiers in Immunology, 2018, 9, 204.	2.2	34
16	Dysregulation of MS risk genes and pathways at distinct stages of disease. Neurology: Neuroimmunology and NeuroInflammation, 2017, 4, e337.	3.1	34
17	Transcriptional dysregulation of Interferome in experimental and human Multiple Sclerosis. Scientific Reports, 2017, 7, 8981.	1.6	22
18	Neural precursor cell–secreted TGF-β2 redirects inflammatory monocyte-derived cells in CNS autoimmunity. Journal of Clinical Investigation, 2017, 127, 3937-3953.	3.9	40

#	Article	IF	Citations
19	Astrocytes: Key Regulators of Neuroinflammation. Trends in Immunology, 2016, 37, 608-620.	2.9	634
20	Neural Stem Cell Transplantation Induces Stroke Recovery by Upregulating Glutamate Transporter GLT-1 in Astrocytes. Journal of Neuroscience, 2016, 36, 10529-10544.	1.7	91
21	The heritage of glatiramer acetate and its use in multiple sclerosis. Multiple Sclerosis and Demyelinating Disorders, 2016, 1 , .	1.1	14
22	Myeloid cells as target of fingolimod action in multiple sclerosis. Neurology: Neuroimmunology and NeuroInflammation, 2015, 2, e157.	3.1	26
23	Critical role for prokineticin 2 in CNS autoimmunity. Neurology: Neuroimmunology and NeuroInflammation, 2015, 2, e95.	3.1	29
24	Skewed B cell differentiation affects lymphoid organogenesis but not T cell-mediated autoimmunity. Clinical and Experimental Immunology, 2014, 176, 58-65.	1.1	1
25	Gene expression analysis of histamine receptors in peripheral blood mononuclear cells from individuals with clinically-isolated syndrome and different stages of multiple sclerosis. Journal of Neuroimmunology, 2014, 277, 186-188.	1.1	7
26	Transcript profiling of different types of multiple sclerosis lesions yields FGF1 as a promoter of remyelination. Acta Neuropathologica Communications, 2014, 2, 168.	2.4	34
27	Molecular and functional definition of the developing human striatum. Nature Neuroscience, 2014, 17, 1804-1815.	7.1	65
28	Intrathecal transplantation of neural precursor cells impairs the effector phase of experimental autoimmune encephalomyelitis. Journal of Neuroimmunology, 2014, 275, 189.	1.1	0
29	Gene expression analysis of histamine receptors in peripheral blood mononuclear cells from clinically-isolated syndrome and multiple sclerosis patients. Journal of Neuroimmunology, 2014, 275, 146.	1.1	0
30	An important role for prokineticin 2 in autoimmune CNS demyelination. Journal of Neuroimmunology, 2014, 275, 131.	1.1	0
31	Microglia's gene expression at different stages of evolution and under pathological conditions. Journal of Neuroimmunology, 2014, 275, 84.	1.1	0
32	Peripheral transcriptional control in multiple sclerosis: Hepatocyte nuclear factor 4 alpha regulates immune cell activation and autoimmunity. Journal of Neuroimmunology, 2014, 275, 57-58.	1,1	0
33	Characterization of ZFP36L1 in the context of multiple sclerosis and functional immunological consequences associated with the susceptibility to the disease. Journal of Neuroimmunology, 2014, 275, 52.	1.1	1
34	Fingolimod may support neuroprotection via blockade of astrocyte S1P and cytokine signaling cascades in Multiple Sclerosis. Journal of Neuroimmunology, 2014, 275, 144-145.	1,1	0
35	Fingolimod may support neuroprotection via blockade of astrocyte nitric oxide. Annals of Neurology, 2014, 76, 325-337.	2.8	142
36	Autocrine and immune cell-derived BDNF in human skeletal muscle: implications for myogenesis and tissue regeneration. Journal of Pathology, 2013, 231, 190-198.	2.1	40

#	Article	IF	Citations
37	Exacerbation of experimental autoimmune encephalomyelitis by passive transfer of IgG antibodies from a multiple sclerosis patient responsive to immunoadsorption. Journal of Neuroimmunology, 2013, 262, 19-26.	1.1	10
38	iPSC-derived neural precursors exert a neuroprotective role in immune-mediated demyelination via the secretion of LIF. Nature Communications, 2013, 4, 2597.	5.8	104
39	Activated macrophages release microvesicles containing polarized M1 or M2 mRNAs. Journal of Leukocyte Biology, 2013, 95, 817-825.	1.5	76
40	Neuron–Glia Interaction via Neurotrophins. Advances in Neurobiology, 2013, , 101-117.	1.3	0
41	Star Trk(B): The astrocyte path to neurodegeneration. Cell Cycle, 2012, 11, 2225-2226.	1.3	6
42	MiR-30e and miR-181d control Radial Glia cell proliferation via HtrA1 modulation. Cell Death and Disease, 2012, 3, e360-e360.	2.7	44
43	Gender-based blood transcriptomes and interactomes in multiple sclerosis: Involvement of SP1 dependent gene transcription. Journal of Autoimmunity, 2012, 38, J144-J155.	3.0	43
44	Stimulation of the neurotrophin receptor TrkB on astrocytes drives nitric oxide production and neurodegeneration. Journal of Experimental Medicine, 2012, 209, 521-535.	4.2	132
45	A role for inflammatory mediators in the modulation of the neurotrophin receptor p75NTR on human muscle precursor cells. Journal of Neuroimmunology, 2012, 243, 100-102.	1.1	1
46	The neurotrophin receptor p75NTR is induced on mature myofibres in inflammatory myopathies and promotes myotube survival to inflammatory stress. Neuropathology and Applied Neurobiology, 2012, 38, 367-378.	1.8	10
47	Stimulation of the neurotrophin receptor TrkB on astrocytes drives nitric oxide production and neurodegeneration. Journal of Cell Biology, 2012, 196, i8-i8.	2.3	0
48	Human Neurotrophin Receptor p75NTR Defines Differentiation-Oriented Skeletal Muscle Precursor Cells: Implications for Muscle Regeneration. Journal of Neuropathology and Experimental Neurology, 2011, 70, 133-142.	0.9	26
49	Shared Molecular and Functional Frameworks among Five Complex Human Disorders: A Comparative Study on Interactomes Linked to Susceptibility Genes. PLoS ONE, 2011, 6, e18660.	1.1	31
50	Astrocytes Exert and Control Immune Responses in the Brain. Current Immunology Reviews, 2010, 6, 150-159.	1.2	24
51	Histamine regulates autoreactive T cell activation and adhesiveness in inflamed brain microcirculation. Journal of Leukocyte Biology, 2010, 89, 259-267.	1.5	21
52	BDNF and its receptors in human myasthenic thymus: Implications for cell fate in thymic pathology. Journal of Neuroimmunology, 2008, 197, 128-139.	1.1	14
53	Astrocytes are active players in cerebral innate immunity. Trends in Immunology, 2007, 28, 138-145.	2.9	1,121
54	CCL19 is constitutively expressed in the CNS, up-regulated in neuroinflammation, active and also inactive multiple sclerosis lesions. Journal of Neuroimmunology, 2007, 190, 72-79.	1.1	115

#	Article	IF	CITATIONS
55	Chemokines in multiple sclerosis: CXCL12 and CXCL13 up-regulation is differentially linked to CNS immune cell recruitment. Brain, 2006, 129, 200-211.	3.7	485
56	Glatiramer acetate in multiple sclerosis: update on potential mechanisms of action. Lancet Neurology, The, 2005, 4, 567-575.	4.9	125
57	Preferential expression and function of Toll-like receptor 3 in human astrocytes. Journal of Neuroimmunology, 2005, 159, 12-19.	1.1	234
58	Differential expression of CD150 (SLAM) on monocytes and macrophages in chronic inflammatory contexts: abundant in Crohn's disease, but not in multiple sclerosis. Journal of Clinical Pathology, 2005, 58, 110-111.	1.0	16
59	Distinct responses of monocytes to Toll-like receptor ligands and inflammatory cytokines. International Immunology, 2004, 16, 799-809.	1.8	97
60	Multiple sclerosis: glatiramer acetate inhibits monocyte reactivity in vitro and in vivo. Brain, 2004, 127, 1370-1378.	3.7	146
61	Treatment with glatiramer acetate induces specific IgG4 antibodies in multiple sclerosis patients. Journal of Neuroimmunology, 2002, 123, 188-192.	1.1	65
62	Immunological assay for assessing the efficacy of glatiramer acetate (Copaxone) in multiple sclerosis. Journal of Neurology, 2002, 249, 1587-1592.	1.8	44
63	Treatment of multiple sclerosis with Copaxone (COP): Elispot assay detects COP-induced interleukin-4 and interferon-gamma response in blood cells. Brain, 2001, 124, 705-719.	3.7	105
64	Mouse DREAM/Calsenilin/KChIP3: Gene Structure, Coding Potential, and Expression. Molecular and Cellular Neurosciences, 2001, 17, 1-16.	1.0	66
65	Multiple sclerosis: Comparison of copolymer-1- reactive T cell lines from treated and untreated subjects reveals cytokine shift from T helper 1 to T helper 2 cells. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97, 7452-7457.	3.3	286
66	Translation of a Retained Intron in Tyrosinase-related Protein (TRP) 2 mRNA Generates a New Cytotoxic T Lymphocyte (CTL)-defined and Shared Human Melanoma Antigen Not Expressed in Normal Cells of the Melanocytic Lineage. Journal of Experimental Medicine, 1998, 188, 1005-1016.	4.2	131
67	Intralesional Selection of T Cell Clonotypes in the Immune Response to Melanoma Antigens Occurring During Vaccination. Journal of Immunotherapy, 1998, 21, 198-204.	1.2	10
68	Clonal expansion of T lymphocytes in human melanoma metastases after treatment with a hapten-modified autologous tumor vaccine Journal of Clinical Investigation, 1997, 99, 710-717.	3.9	51
69	Conserved TCR usage by HLA-Cw*1601-restricted T cell clones recognizing melanoma antigens. International Immunology, 1996, 8, 1463-1466.	1.8	20
70	Cytotoxic T-lymphocyte clones from different patients display limited T-cell-receptor variable-region gene usage in HLA-A2-restricted recognition of the melanoma antigen Melan-A/MART-1 Proceedings of the National Academy of Sciences of the United States of America, 1995, 92, 5674-5678.	3.3	95