Valérie Langlois

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4533554/publications.pdf

Version: 2024-02-01

67 1,706 25 38 g-index

67 67 67 67 1806

times ranked

citing authors

docs citations

all docs

#	Article	IF	Citations
1	Improved Processability and Antioxidant Behavior of Poly(3-hydroxybutyrate) in Presence of Ferulic Acid-Based Additives. Bioengineering, 2022, 9, 100.	1.6	4
2	Fully Bio-Based Epoxy-Amine Thermosets Reinforced with Recycled Carbon Fibers as a Low Carbon-Footprint Composite Alternative. ACS Applied Polymer Materials, 2021, 3, 426-435.	2.0	17
3	Dual UV-Thermal Curing of Biobased Resorcinol Epoxy Resin-Diatomite Composites with Improved Acoustic Performance and Attractive Flame Retardancy Behavior. Sustainable Chemistry, 2021, 2, 24-48.	2.2	7
4	Antioxidant Network Based on Sulfonated Polyhydroxyalkanoate and Tannic Acid Derivative. Bioengineering, 2021, 8, 9.	1.6	3
5	Blending Ferulic Acid Derivatives and Polylactic Acid into Biobased and Transparent Elastomeric Materials with Shape Memory Properties. Biomacromolecules, 2021, 22, 1568-1578.	2.6	15
6	Study of Mechanical Properties of PHBHV/Miscanthus Green Composites Using Combined Experimental and Micromechanical Approaches. Polymers, 2021, 13, 2650.	2.0	4
7	Additive manufacturing of polyhydroxyalkanoates (PHAs) biopolymers: Materials, printing techniques, and applications. Materials Science and Engineering C, 2021, 127, 112216.	3.8	63
8	Amphiphilic and Perfluorinated Poly(3-Hydroxyalkanoate) Nanocapsules for 19F Magnetic Resonance Imaging. Bioengineering, 2021, 8, 121.	1.6	2
9	Multiscale Characterization of Creep and Fatigue Crack Propagation Resistance of Fully Bio-Based Epoxy-Amine Resins. ACS Applied Polymer Materials, 2021, 3, 5134-5144.	2.0	7
10	Synthesis of Fluorinated Polyhydroxyalkanoates from Marine Bioresources as a Promising Biomaterial Coating. Biomacromolecules, 2021, 22, 4510-4520.	2.6	4
11	Multiscale Network Structure Analysis by Time Domain1H DQ NMR and DMA of Resorcinol Diglycidyl Etherâ€Jeffamine Matrices. ChemistrySelect, 2020, 5, 11291-11298.	0.7	3
12	Resorcinol-Based Epoxy Resins Hardened with Limonene and Eugenol Derivatives: From the Synthesis of Renewable Diamines to the Mechanical Properties of Biobased Thermosets. ACS Sustainable Chemistry and Engineering, 2020, 8, 13064-13075.	3.2	37
13	Novel poly(3-hydroxy butyrate) macro RAFT agent. Synthesis and characterization of thermoresponsive block copolymers. Journal of Polymer Research, 2020, 27, 1.	1.2	16
14	Multiscale Structural Characterization of Biobased Diallyl–Eugenol Polymer Networks. Macromolecules, 2020, 53, 2187-2197.	2.2	16
15	Co-Networks Poly(hydroxyalkanoates)-Terpenes to Enhance Antibacterial Properties. Bioengineering, 2020, 7, 13.	1.6	7
16	Photocurable bulk epoxy resins based on resorcinol derivative through cationic polymerization. Journal of Applied Polymer Science, 2020, 137, 49051.	1.3	13
17	The Design of Functionalized PHA-Based Polymeric Materials by Chemical Modifications. , 2020, , 17-42.		4
18	Thermal Stability and Flammability Behavior of Poly(3-hydroxybutyrate) (PHB) Based Composites. Materials, 2019, 12, 2239.	1.3	44

#	Article	IF	Citations
19	Water-Soluble Poly(3-hydroxyalkanoate) Sulfonate: Versatile Biomaterials Used as Coatings for Highly Porous Nano-Metal Organic Framework. Biomacromolecules, 2019, 20, 3324-3332.	2.6	18
20	Biodegradable polyester thin films and coatings in the line of fire: the time of polyhydroxyalkanoate (PHA)?. Progress in Organic Coatings, 2019, 133, 85-89.	1.9	27
21	Enhancement of Biological Properties of Photoinduced Biobased Networks by Post-Functionalization with Antibacterial Molecule. ACS Sustainable Chemistry and Engineering, 2019, 7, 2500-2507.	3.2	10
22	Electrospun Nanofibrous Poly (3-Hydroxybutyrate-Co-3-Hydroxyvalerate) With Antibacterial Activity. , 2019, , 1-7.		0
23	Renewable Semi-Interpenetrating Polymer Networks Based on Vegetable Oils Used as Plasticized Systems of Poly(3-hydroxyalkanoate)s. ACS Sustainable Chemistry and Engineering, 2018, 6, 5034-5042.	3.2	16
24	Paprika, Gallic Acid, and Visible Light: The Green Combination for the Synthesis of Biocide Coatings. ACS Sustainable Chemistry and Engineering, 2018, 6, 104-109.	3.2	41
25	Natural Terpenes Used as Plasticizers for Poly(3-hydroxybutyrate). ACS Sustainable Chemistry and Engineering, 2018, 6, 16160-16168.	3.2	31
26	Biocomposites Based on Poly(3-Hydroxybutyrate-co-3-Hydroxyvalerate) (PHBHV) and Miscanthus giganteus Fibers with Improved Fiber/Matrix Interface. Polymers, 2018, 10, 509.	2.0	6
27	Design of functionalized biodegradable PHA-based electrospun scaffolds meant for tissue engineering applications. New Biotechnology, 2017, 37, 129-137.	2.4	52
28	Design of Antibacterial and Sustainable Antioxidant Networks Based on Plant Phenolic Derivatives Used As Delivery System of Carvacrol or Tannic Acid. ACS Sustainable Chemistry and Engineering, 2017, 5, 2320-2329.	3.2	54
29	Networks based on biodegradable polyesters: An overview of the chemical ways of crosslinking. Materials Science and Engineering C, 2017, 80, 760-770.	3.8	25
30	Straightforward Route To Design Biorenewable Networks Based on Terpenes and Sunflower Oil. ACS Sustainable Chemistry and Engineering, 2017, 5, 6707-6715.	3.2	14
31	Effet de la modiï¬cation chimique des ï¬bres. Revue Des Composites Et Des Materiaux Avances, 2017, 27, 11-30.	0.2	1
32	UV-cured thiol–ene eugenol/ZnO composite materials with antibacterial properties. RSC Advances, 2016, 6, 88135-88142.	1.7	19
33	Functionalization of Miscanthus by Photoactivated Thiol–Ene Addition to Improve Interfacial Adhesion with Polycaprolactone. ACS Sustainable Chemistry and Engineering, 2016, 4, 5475-5482.	3.2	6
34	Antibacterial and antioxidant bio-based networks derived from eugenol using photo-activated thiol-ene reaction. Reactive and Functional Polymers, 2016, 101, 47-53.	2.0	50
35	Poly(3-hydroxyalkanoate) sulfonate: From nanoparticles toward water soluble polyesters. European Polymer Journal, 2015, 68, 471-479.	2.6	17
36	Antibacterial Networks Based on Isosorbide and Linalool by Photoinitiated Process. ACS Sustainable Chemistry and Engineering, 2015, 3, 1094-1100.	3.2	41

#	Article	IF	CITATIONS
37	From design of bio-based biocomposite electrospun scaffolds to osteogenic differentiation of human mesenchymal stromal cells. Journal of Materials Science: Materials in Medicine, 2014, 25, 1563-1575.	1.7	47
38	Biocomposite scaffolds based on electrospun poly(3-hydroxybutyrate) nanofibers and electrosprayed hydroxyapatite nanoparticles for bone tissue engineering applications. Materials Science and Engineering C, 2014, 38, 161-169.	3.8	116
39	Electrografting of a biodegradable layer as a primer adhesion coating onto a metallic stent: in vitro and in vivo evaluations. Journal of Materials Science: Materials in Medicine, 2013, 24, 2729-2739.	1.7	6
40	High glass transition temperature bio-based copolyesters from poly(3-hydroxybutyrate-co-3-hydroxyvalerate) and isosorbide. Reactive and Functional Polymers, 2013, 73, 1656-1661.	2.0	15
41	Facile Synthesis of Multicompartment Micelles Based on Biocompatible Poly(3â€hydroxyalkanoate). Macromolecular Rapid Communications, 2013, 34, 362-368.	2.0	32
42	Photoinduced modification of the natural biopolymer poly(3-hydroxybutyrate-co-3-hydroxyvalerate) microfibrous surface with anthraquinone-derived dextran for biological applications. Journal of Materials Chemistry B, 2013, 1, 4834.	2.9	10
43	Development of a new azido-oxazoline monomer for the preparation of amphiphilic graft copolymers by combination of cationic ring-opening polymerization and click chemistry. Reactive and Functional Polymers, 2013, 73, 1001-1008.	2.0	34
44	Designing exopolysaccharide-graft-poly(3-hydroxyalkanoate) copolymers for electrospun scaffolds. Reactive and Functional Polymers, 2013, 73, 237-243.	2.0	10
45	Poly(3-hydroxyalkanoate)-derived amphiphilic graft copolymers for the design of polymersomes. Chemical Communications, 2012, 48, 5364.	2.2	32
46	Synthesis of dextran-graft-PHBHV amphiphilic copolymer using click chemistry approach. Reactive and Functional Polymers, 2012, 72, 487-494.	2.0	24
47	An Efficient Thiolâ€Ene Chemistry for the Preparation of Amphiphilic PHAâ€Based Graft Copolymers. Macromolecular Rapid Communications, 2012, 33, 2041-2045.	2.0	33
48	A micellization study of medium chain length poly(3-hydroxyalkanoate)-based amphiphilic diblock copolymers. Journal of Colloid and Interface Science, 2012, 375, 88-93.	5.0	28
49	Functionalized oligoesters from poly(3-hydroxyalkanoate)s containing reactive end group for click chemistry: Application to novel copolymer synthesis with poly(2-methyl-2-oxazoline). Reactive and Functional Polymers, 2012, 72, 160-167.	2.0	27
50	Multilayer approach for tuning the drug delivery from poly(3-hydroxyalkanaoate)s coatings. Reactive and Functional Polymers, 2012, 72, 260-267.	2.0	16
51	Toward the controlled production of oligoesters by microwave-assisted degradation of poly(3-hydroxyalkanoate)s. Polymer Degradation and Stability, 2012, 97, 322-328.	2.7	18
52	Controlled Synthesis of Well Defined Poly(3â€hydroxyalkanoate)sâ€based Amphiphilic Diblock Copolymers Using Click Chemistry. Macromolecular Chemistry and Physics, 2011, 212, 278-285.	1.1	35
53	Grafting biodegradable polyesters onto cellulose. Journal of Applied Polymer Science, 2011, 121, 1183-1192.	1.3	23
54	\tilde{A} % laboration de nouveaux syst \tilde{A} mes biod \tilde{A} © gradables \tilde{A} © lectrogreffables pour stents endovasculaires m \tilde{A} © talliques. Irbm, 2010, 31, 111-114.	3.7	2

#	Article	IF	CITATIONS
55	Role of carboxyl pendant groups of medium chain length poly(3â€hydroxyalkanoate)s in biomedical temporary applications. Journal of Applied Polymer Science, 2010, 117, 1888-1896.	1.3	13
56	Preparation of <i>Clickable</i> Poly(3â€hydroxyalkanoate) (PHA): Application to Poly(ethylene glycol) (PEG) Graft Copolymers Synthesis. Macromolecular Rapid Communications, 2010, 31, 619-624.	2.0	23
57	Degradation of Natural and Artificial Poly[(R)-3-hydroxyalkanoate]s: From Biodegradation to Hydrolysis. Microbiology Monographs, 2010, , 283-321.	0.3	8
58	Monohydroxylated Poly(3-hydroxyoctanoate) Oligomers and Its Functionalized Derivatives Used as Macroinitiators in the Synthesis of Degradable Diblock Copolyesters. Biomacromolecules, 2007, 8, 1255-1265.	2.6	41
59	Modification of Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) Film by Chemical Graft Copolymerization. Biomacromolecules, 2007, 8, 416-423.	2.6	63
60	Bacterial polyesters grafted with poly(ethylene glycol): Behaviour in aqueous media. Polymer Degradation and Stability, 2007, 92, 1384-1392.	2.7	24
61	Preparation of a Novel Artificial Bacterial Polyester Modified with Pendant Hydroxyl Groups. Biomacromolecules, 2005, 6, 891-896.	2.6	35
62	Novel Biodegradable Copolyesters Containing Blocks of Poly(3-hydroxyoctanoate) and Poly(?-caprolactone): Synthesis and Characterization. Macromolecular Bioscience, 2004, 4, 1014-1020.	2.1	29
63	Hydrolytic degradation of blends of polyhydroxyalkanoates and functionalized polyhydroxyalkanoates. Polymer Degradation and Stability, 2004, 85, 779-787.	2.7	81
64	Synthesis of Graft Bacterial Polyesters for Nanoparticles Preparation. Macromolecular Bioscience, 2003, 3, 248-252.	2.1	26
65	Fourier Transform Infrared Spectroscopy for Screening and Quantifying Production of PHAs byPseudomonasGrown on Sodium Octanoate. Biomacromolecules, 2003, 4, 1092-1097.	2.6	76
66	Preparation of a bacterial polyester with carboxy groups in side chains. Comptes Rendus De L'Academie Des Sciences - Series IIc: Chemistry, 2001, 4, 289-293.	0.1	9
67	Bacterial poly-3-hydroxyalkenoates with epoxy groups in the side chains. Reactive and Functional Polymers, 1997, 34, 65-77.	2.0	76