
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4533432/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Electrostatic sheathing of lipoprotein lipase is essential for its movement across capillary endothelial cells. Journal of Clinical Investigation, 2022, 132, .	8.2	13
2	High-resolution visualization and quantification of nucleic acid–based therapeutics in cells and tissues using Nanoscale secondary ion mass spectrometry (NanoSIMS). Nucleic Acids Research, 2021, 49, 1-14.	14.5	51
3	Increased expression of LAP2β eliminates nuclear membrane ruptures in nuclear lamin–deficient neurons and fibroblasts. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, e2107770118.	7.1	3
4	The structural basis for monoclonal antibody 5D2 binding to the tryptophan-rich loop of lipoprotein lipase. Journal of Lipid Research, 2020, 61, 1347-1359.	4.2	11
5	Nuclear membrane ruptures, cell death, and tissue damage in the setting of nuclear lamin deficiencies. Nucleus, 2020, 11, 237-249.	2.2	10
6	Chylomicronemia from GPIHBP1 autoantibodies. Journal of Lipid Research, 2020, 61, 1365-1376.	4.2	21
7	The fatty acids from LPL-mediated processing of triglyceride-rich lipoproteins are taken up rapidly by cardiomyocytes. Journal of Lipid Research, 2020, 61, 815.	4.2	3
8	Peroxidasin-mediated bromine enrichment of basement membranes. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 15827-15836.	7.1	21
9	Intermittent chylomicronemia caused by intermittent CPIHBP1 autoantibodies. Journal of Clinical Lipidology, 2020, 14, 197-200.	1.5	13
10	GPIHBP1, a partner protein for lipoprotein lipase, is expressed only in capillary endothelial cells. Journal of Lipid Research, 2020, 61, 591.	4.2	9
11	Cultured macrophages transfer surplus cholesterol into adjacent cells in the absence of serum or high-density lipoproteins. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 10476-10483.	7.1	21
12	DYT1 Dystonia Patient-Derived Fibroblasts Have Increased Deformability and Susceptibility to Damage by Mechanical Forces. Frontiers in Cell and Developmental Biology, 2019, 7, 103.	3.7	14
13	GPIHBP1 and Lipoprotein Lipase, Partners in Plasma Triglyceride Metabolism. Cell Metabolism, 2019, 30, 51-65.	16.2	86
14	Correlative Live-Cell, Electron Microscopy and Nanoscale Secondary Ion Mass Spectrometry Elucidates the Mechanism for the Release of Cholesterol-Rich Particles from the Plasma Membrane of Macrophages. Microscopy and Microanalysis, 2019, 25, 1028-1029.	0.4	0
15	Lipoprotein lipase is active as a monomer. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 6319-6328.	7.1	60
16	An absence of lamin B1 in migrating neurons causes nuclear membrane ruptures and cell death. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 25870-25879.	7.1	64
17	An upstream enhancer regulates Gpihbp1 expression in a tissue-specific manner. Journal of Lipid Research, 2019, 60, 869-879.	4.2	7
18	Structure of the lipoprotein lipase–GPIHBP1 complex that mediates plasma triglyceride hydrolysis. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 1723-1732.	7.1	67

#	Article	IF	CITATIONS
19	GPIHBP1 expression in gliomas promotes utilization of lipoprotein-derived nutrients. ELife, 2019, 8, .	6.0	10
20	Release of cholesterol-rich particles from the macrophage plasma membrane during movement of filopodia and lamellipodia. ELife, 2019, 8, .	6.0	27
21	NanoSIMS Analysis of Intravascular Lipolysis and Lipid Movement across Capillaries and into Cardiomyocytes. Cell Metabolism, 2018, 27, 1055-1066.e3.	16.2	54
22	Palmoplantar keratoderma in Slurp1/Slurp2 double-knockout mice. Journal of Dermatological Science, 2018, 89, 85-87.	1.9	2
23	IL-10 Signaling Remodels Adipose Chromatin Architecture to Limit Thermogenesis and Energy Expenditure. Cell, 2018, 172, 218-233.e17.	28.9	142
24	Disrupting the LINC complex in smooth muscle cells reduces aortic disease in a mouse model of Hutchinson-Gilford progeria syndrome. Science Translational Medicine, 2018, 10, .	12.4	63
25	Fibroblasts lacking nuclear lamins do not have nuclear blebs or protrusions but nevertheless have frequent nuclear membrane ruptures. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 10100-10105.	7.1	66
26	NanoSIMS imaging reveals unexpected heterogeneity in nutrient uptake by brown adipocytes. Biochemical and Biophysical Research Communications, 2018, 504, 899-902.	2.1	8
27	Correlative Electron Microscopy and NanoSIMS Analysis for Lipid Studies. Microscopy and Microanalysis, 2018, 24, 360-361.	0.4	1
28	Macrophages release plasma membrane-derived particles rich in accessible cholesterol. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E8499-E8508.	7.1	41
29	A disordered acidic domain in GPIHBP1 harboring a sulfated tyrosine regulates lipoprotein lipase. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E6020-E6029.	7.1	51
30	Prelamin A causes aberrant myonuclear arrangement and results in muscle fiber weakness. JCI Insight, 2018, 3, .	5.0	19
31	Nanosims Imaging: An Approach for Visualizing and Quantifying Lipids in Cells and Tissues. Journal of Investigative Medicine, 2017, 65, 669-672.	1.6	28
32	High-resolution imaging and quantification of plasma membrane cholesterol by NanoSIMS. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 2000-2005.	7.1	71
33	A hypomorphic <i>Egfr</i> allele does not ameliorate the palmoplantar keratoderma caused by SLURP1 deficiency. Experimental Dermatology, 2017, 26, 1134-1136.	2.9	1
34	Mutating a conserved cysteine in GPIHBP1 reduces amounts of GPIHBP1 in capillaries and abolishes LPL binding. Journal of Lipid Research, 2017, 58, 1453-1461.	4.2	16
35	GPIHBP1 autoantibodies in a patient with unexplained chylomicronemia. Journal of Clinical Lipidology, 2017, 11, 964-971.	1.5	25
36	Autoantibodies against GPIHBP1 as a Cause of Hypertriglyceridemia. New England Journal of Medicine, 2017, 376, 1647-1658.	27.0	112

#	Article	IF	CITATIONS
37	Mobility of "HSPG-bound―LPL explains how LPL is able to reach GPIHBP1 on capillaries. Journal of Lipid Research, 2017, 58, 216-225.	4.2	33
38	Monoclonal antibodies that bind to the Ly6 domain of GPIHBP1 abolish the binding of LPL. Journal of Lipid Research, 2017, 58, 208-215.	4.2	15
39	Lipoprotein lipase reaches the capillary lumen in chickens despite an apparent absence of GPIHBP1. JCI Insight, 2017, 2, .	5.0	9
40	Lamin B1 and lamin B2 are long-lived proteins with distinct functions in retinal development. Molecular Biology of the Cell, 2016, 27, 1928-1937.	2.1	33
41	Palmoplantar Keratoderma in Slurp2-Deficient Mice. Journal of Investigative Dermatology, 2016, 136, 436-443.	0.7	15
42	GPIHBP1 and Plasma Triglyceride Metabolism. Trends in Endocrinology and Metabolism, 2016, 27, 455-469.	7.1	67
43	An LPL–specific monoclonal antibody, 88B8, that abolishes the binding of LPL to GPIHBP1. Journal of Lipid Research, 2016, 57, 1889-1898.	4.2	10
44	<i>LMNA</i> missense mutations causing familial partial lipodystrophy do not lead to an accumulation of prelamin A. Nucleus, 2016, 7, 512-521.	2.2	11
45	The acidic domain of the endothelial membrane protein GPIHBP1 stabilizes lipoprotein lipase activity by preventing unfolding of its catalytic domain. ELife, 2016, 5, e12095.	6.0	74
46	Nuclear Envelope Protein Lem2 is Required for Mouse Development and Regulates MAP and AKT Kinases. PLoS ONE, 2015, 10, e0116196.	2.5	34
47	<i>GPIHBP1</i> Missense Mutations Often Cause Multimerization of GPIHBP1 and Thereby Prevent Lipoprotein Lipase Binding. Circulation Research, 2015, 116, 624-632.	4.5	50
48	An Absence of Nuclear Lamins in Keratinocytes Leads to Ichthyosis, Defective Epidermal Barrier Function, and Intrusion of Nuclear Membranes and Endoplasmic Reticulum into the Nuclear Chromatin. Molecular and Cellular Biology, 2014, 34, 4534-4544.	2.3	28
49	Reciprocal knock-in mice to investigate the functional redundancy of lamin B1 and lamin B2. Molecular Biology of the Cell, 2014, 25, 1666-1675.	2.1	22
50	The GPIHBP1–LPL Complex Is Responsible for the Margination of Triglyceride-Rich Lipoproteins in Capillaries. Cell Metabolism, 2014, 19, 849-860.	16.2	124
51	Equivalent binding of wild-type lipoprotein lipase (LPL) and S447X-LPL to GPIHBP1, the endothelial cell LPL transporter. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2014, 1841, 963-969.	2.4	10
52	Nuclear Lamins and Neurobiology. Molecular and Cellular Biology, 2014, 34, 2776-2785.	2.3	43
53	The LXR–Idol Axis Differentially Regulates Plasma LDL Levels in Primates and Mice. Cell Metabolism, 2014, 20, 910-918.	16.2	72
54	High-resolution imaging of dietary lipids in cells and tissues by NanoSIMS analysis. Journal of Lipid Research, 2014, 55, 2156-2166.	4.2	44

#	Article	IF	CITATIONS
55	Palmoplantar Keratoderma along with Neuromuscular and Metabolic Phenotypes in Slurp1 -Deficient Mice. Journal of Investigative Dermatology, 2014, 134, 1589-1598.	0.7	35
56	Lipin-1 and lipin-3 together determine adiposity in vivo. Molecular Metabolism, 2014, 3, 145-154.	6.5	48
57	A new monoclonal antibody, 4-1a, that binds to the amino terminus of human lipoprotein lipase. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2014, 1841, 970-976.	2.4	4
58	Nuclear Lamins in the Brain $\hat{a} \in$ " New Insights into Function and Regulation. Molecular Neurobiology, 2013, 47, 290-301.	4.0	31
59	Farnesylation of lamin B1 is important for retention of nuclear chromatin during neuronal migration. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E1923-32.	7.1	71
60	Regulation of prelamin A but not lamin C by miR-9, a brain-specific microRNA. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, E423-31.	7.1	185
61	Understanding the Roles of Nuclear A- and B-type Lamins in Brain Development. Journal of Biological Chemistry, 2012, 287, 16103-16110.	3.4	48
62	Assessing mechanisms of GPIHBP1 and lipoprotein lipase movement across endothelial cells. Journal of Lipid Research, 2012, 53, 2690-2697.	4.2	62
63	Mutations in lipoprotein lipase that block binding to the endothelial cell transporter GPIHBP1. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 7980-7984.	7.1	53
64	GPIHBP1, an endothelial cell transporter for lipoprotein lipase. Journal of Lipid Research, 2011, 52, 1869-1884.	4.2	94
65	An absence of both lamin B1 and lamin B2 in keratinocytes has no effect on cell proliferation or the development of skin and hair. Human Molecular Genetics, 2011, 20, 3537-3544.	2.9	86
66	Deficiencies in lamin B1 and lamin B2 cause neurodevelopmental defects and distinct nuclear shape abnormalities in neurons. Molecular Biology of the Cell, 2011, 22, 4683-4693.	2.1	195
67	Investigating the purpose of prelamin A processing. Nucleus, 2011, 2, 4-9.	2.2	39
68	Assessing the Role of the Glycosylphosphatidylinositol-anchored High Density Lipoprotein-binding Protein 1 (GPIHBP1) Three-finger Domain in Binding Lipoprotein Lipase. Journal of Biological Chemistry, 2011, 286, 19735-19743.	3.4	48
69	Unexpected Expression Pattern for Glycosylphosphatidylinositol-anchored HDL-binding Protein 1 (GPIHBP1) in Mouse Tissues Revealed by Positron Emission Tomography Scanning. Journal of Biological Chemistry, 2010, 285, 39239-39248.	3.4	36
70	Mutation of conserved cysteines in the Ly6 domain of CPIHBP1 in familial chylomicronemia. Journal of Lipid Research, 2010, 51, 1535-1545.	4.2	103
71	GPIHBP1 Is Responsible for the Entry of Lipoprotein Lipase into Capillaries. Cell Metabolism, 2010, 12, 42-52.	16.2	298
72	Abnormal development of the cerebral cortex and cerebellum in the setting of lamin B2 deficiency. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 5076-5081	7.1	149

#	Article	IF	CITATIONS
73	Highly Conserved Cysteines within the Ly6 Domain of GPIHBP1 Are Crucial for the Binding of Lipoprotein Lipase. Journal of Biological Chemistry, 2009, 284, 30240-30247.	3.4	69
74	Activating the synthesis of progerin, the mutant prelamin A in Hutchinson–Gilford progeria syndrome, with antisense oligonucleotides. Human Molecular Genetics, 2009, 18, 2462-2471.	2.9	43
75	Abnormal Patterns of Lipoprotein Lipase Release into the Plasma in GPIHBP1-deficient Mice. Journal of Biological Chemistry, 2008, 283, 34511-34518.	3.4	64
76	HIV protease inhibitors block the zinc metalloproteinase ZMPSTE24 and lead to an accumulation of farnesylâ€prelamin A in cells FASEB Journal, 2008, 22, 401.3.	0.5	0
77	Glycosylphosphatidylinositol-Anchored High-Density Lipoprotein-Binding Protein 1 Plays a Critical Role in the Lipolytic Processing of Chylomicrons. Cell Metabolism, 2007, 5, 279-291.	16.2	420
78	A Protein Farnesyltransferase Inhibitor Ameliorates Disease in a Mouse Model of Progeria. Science, 2006, 311, 1621-1623.	12.6	295
79	Prelamin A and lamin A appear to be dispensable in the nuclear lamina. Journal of Clinical Investigation, 2006, 116, 743-752.	8.2	209
80	Heterozygosity for Lmna deficiency eliminates the progeria-like phenotypes in Zmpste24-deficient mice. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 18111-18116.	7.1	191

6