Dibakar Chandra Deka

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/453337/publications.pdf

Version: 2024-02-01

759233 713466 30 476 12 21 h-index g-index citations papers 30 30 30 568 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Heavy Metal Monitoring Tactics for Associated Human Health Risks Decline in Foods & Decli	0.6	O
2	Ethnic food beverages with heavy metal contents: Parameters for associated risk to human health, North-East India. Toxicology Reports, 2021, 8, 1220-1225.	3.3	9
3	lodine catalyzed regioselective sulfenylation of aminouracils with sulfonyl hydrazides. Tetrahedron Letters, 2021, 65, 152753.	1.4	7
4	Water hyacinth ash: an efficient green catalyst for the synthesis of \hat{l}^2 -amino carbonyl/nitrile compounds by aza-Michael reaction at room temperature. SN Applied Sciences, 2020, 2, 1.	2.9	11
5	Antioxidant Properties and Phenolic Contents of Traditional Rice-Based Alcoholic Beverages of Assam, India. The National Academy of Sciences, India, 2020, 43, 501-503.	1.3	14
6	Procyanidin A2, an anti-diabetic condensed tannin extracted from <i>Wendlandia glabrata</i> , reduces elevated G-6-Pase and mRNA levels in diabetic mice and increases glucose uptake in CC1 hepatocytes and C1C12 myoblast cells. RSC Advances, 2019, 9, 17211-17219.	3.6	13
7	Antioxidant-Activity and Physicochemical Indices of the Rice Beer Used by the <i>Bodo < /i>Community in North-East India. Journal of the American Society of Brewing Chemists, 2018, 76, 112-116.</i>	1.1	7
8	A Quick Micelleâ€Catalyzed Oneâ€Pot Synthesis of Spiro[indolineâ€3, 4′â€pyrano[2, 3â€ <i>c</i>]pat Room Temperature. ChemistrySelect, 2018, 3, 1512-1516.	yrazoles] i 1.5	n Water
9	2-Phenyl-2,3-dihydrobenzo[d]thiazole: A Mild, Efficient, and Highly Active in situ Generated Chemoselective Reducing Agent for the One-Pot Synthesis of 5-Monoalkylbarbiturates in Water. Synlett, 2018, 29, 477-482.	1.8	6
10	A Molecular Hybridization Approach for Simple and Expeditious Synthesis of Novel Spiro[oxindolineâ€3, 4′â€isoxazolo[5, 4―b]pyrazolo[4, 3―e]pyridines] in Water. Chemistry 7862-7866.	Se les t, 20	1863,
11	Expeditious synthesis of 2,3-dihydroquinazolin- $4(1 < i > H < / i >)$ -ones in aqueous medium using thiamine hydrochloride (VB $<$ sub $>1 < / sub>) as a mild, efficient, and reusable organocatalyst. Synthetic Communications, 2017, 47, 1601-1609.$	2.1	14
12	Evaluation of Anticancer and Antimicrobial Activity of Arborinine from Glycosmis pentaphylla. Journal of Biologically Active Products From Nature, 2017, 7, 131-139.	0.3	2
13	Metal profile of traditional alcoholic beverages prepared by the ethnic communities of Assam, India. Journal of the Institute of Brewing, 2017, 123, 284-288.	2.3	13
14	A new, convenient and expeditious synthesis of 4-alkyl-5-methyl-1H-pyrazol-3-ols in water through a multicomponent reaction. Tetrahedron Letters, 2017, 58, 566-569.	1.4	9
15	A Quick, Simple and Clean Synthesis of Spiro(indolineâ€3,4′â€pyrazolo[4′, 3′:5,6]pyrido[2, 3â€ <i>d</i>]pyrimidines) in Water through Multicomponent Reaction. ChemistrySelect, 2017, 2, 5701-5706.	h a1N5ovel (On e á€Pot
16	l-Proline-Catalysed One-Pot Regio- and Diastereoselective Synthesis of Spiro[pyrido[2,3-d]pyrimidin-2-amine-6,5′-pyrimidines] in Water. SynOpen, 2017, 01, 0045-0049.	1.7	5
17	Single Crystal X-Ray Diffraction in Structure Elucidation of Arborinine from Glycosmis pentaphylla. Natural Products Journal, 2017, 7, .	0.3	0
18	Preparation and Characterization of a Heterogeneous Catalyst from Water Hyacinth (Eichhornia) Tj ETQq0 0 0 rg	gBT /Overlo 0.5	ock 10 Tf 50 6 21

Under Solvent Free Condition. Current Catalysis, 2016, 5, 51-65.

#	Article	IF	CITATIONS
19	Ni–Al2O3 as reusable heterogeneous catalyst for expedient one-pot synthesis of naphthopyrans. Research on Chemical Intermediates, 2016, 42, 6863-6871.	2.7	13
20	Organocatalytic domino Knöevenagel–Michael reaction in water for the regioselective synthesis of benzo[4,5]imidazo[1,2-a]pyrimidines and pyrido[2,3-d]pyrimidin-2-amines. RSC Advances, 2016, 6, 91320-91324.	3.6	22
21	In vitro and in vivo anti-diabetic and hepatoprotective effects of edible pods of Parkia roxburghii and quantification of the active constituent by HPLC-PDA. Journal of Ethnopharmacology, 2016, 191, 21-28.	4.1	17
22	Antioxidant activity of some non-conventional green leafy vegetables ofÂNorth-East India. Mediterranean Journal of Nutrition and Metabolism, 2015, 8, 205-211.	0.5	3
23	Analysis of nutrient content of five non-conventional vegetables of Assam, India. Mediterranean Journal of Nutrition and Metabolism, 2015, 8, 101-108.	0.5	0
24	Fuel property of biodiesel and petrodiesel mix: experiment with biodiesel from yellow oleander seed oil. Biofuels, 2015, 6, 269-272.	2.4	3
25	Pot, atom and step economic (PASE) synthesis of 5-monoalkylbarbiturates through domino aldol-Michael reaction. Tetrahedron Letters, 2015, 56, 731-734.	1.4	17
26	Synthesis and characterization of yellow oleander (Thevetia peruviana) seed oil-based alkyd resin. Industrial Crops and Products, 2014, 52, 721-728.	5.2	63
27	Reaction of 6-aminouracils with aldehydes in water as both solvent and reactant under FeCl ₃ ·6H ₂ O catalysis: towards 5-alkyl/arylidenebarbituric acids. RSC Advances, 2014, 4, 32207-32213.	3.6	20
28	Fenton oxidation and combined Fenton-microbial treatment for remediation of crude oil contaminated soil in Assam – India. Environmental Sciences: Processes and Impacts, 2013, 15, 1913.	3.5	18
29	High quality biodiesel from yellow oleander (Thevetia peruviana) seed oil. Biomass and Bioenergy, 2011, 35, 1797-1803.	5.7	124
30	Selective Reduction of Aromatic Nitro Groups in the Presence of Amide Functionality. Journal of Chemical Research, 2006, 2006, 223-224.	1.3	8