Jennifer J Westendorf

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4532998/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Musculoskeletal Knowledge Portal: improving access to multi-omics data. Nature Reviews Rheumatology, 2022, 18, 1-2.	8.0	8
2	GIRK3 deletion facilitates kappa opioid signaling in chondrocytes, delays vascularization and promotes bone lengthening in mice. Bone, 2022, 159, 116391.	2.9	2
3	Single Cell Omics for Musculoskeletal Research. Current Osteoporosis Reports, 2021, 19, 131-140.	3.6	10
4	GAS7 Deficiency Promotes Metastasis in MYCN-Driven Neuroblastoma. Cancer Research, 2021, 81, 2995-3007.	0.9	15
5	Precise detection of a murine germline mutation of the Notch3 gene associated with kyphosis and developmental disorders. Journal of Advanced Veterinary and Animal Research, 2021, 8, 1.	1.2	1
6	Histone Mutations and Bone Cancers. Advances in Experimental Medicine and Biology, 2021, 1283, 53-62.	1.6	8
7	Hdac3 regulates bone modeling by suppressing osteoclast responsiveness to RANKL. Journal of Biological Chemistry, 2020, 295, 17713-17723.	3.4	10
8	An activating germline IDH1 variant associated with a tumor entity characterized by unilateral and bilateral chondrosarcoma of the mastoid. Human Genetics and Genomics Advances, 2020, 1, 100006.	1.7	3
9	The Musculoskeletal Knowledge Portal: Making Omics Data Useful to the Broader Scientific Community. Journal of Bone and Mineral Research, 2020, 35, 1626-1633.	2.8	25
10	Bringing Genomic Discoveries to the Clinic: Integrating Omic Data Into the Musculoskeletal Field Through International Teamwork and Collaboration. Journal of Bone and Mineral Research, 2020, 35, 1623-1625.	2.8	2
11	Hdac3 deletion in myeloid progenitor cells enhances bone healing in females and limits osteoclast fusion via Pmepa1. Scientific Reports, 2020, 10, 21804.	3.3	10
12	Scientific Editing in the <scp>COVID</scp> â€19 Era—Personal Vignettes from the <scp><i>JBMR</i></scp> Editors. Journal of Bone and Mineral Research, 2020, 35, 1005-1008.	2.8	2
13	The importance of diversity, equity, and inclusion in orthopedic research. Journal of Orthopaedic Research, 2020, 38, 1661-1665.	2.3	10
14	Inhibition of the epigenetic suppressor EZH2 primes osteogenic differentiation mediated by BMP2. Journal of Biological Chemistry, 2020, 295, 7877-7893.	3.4	51
15	Pleckstrin homology (PH) domain and Leucine Rich Repeat Phosphatase 1 (Phlpp1) Suppresses Parathyroid Hormone Receptor 1 (Pth1r) Expression and Signaling During Bone Growth. Journal of Bone and Mineral Research, 2020, 36, 986-999.	2.8	6
16	Lung tumor cells inhibit bone mineralization and osteoblast activity. Biochemical and Biophysical Research Communications, 2019, 519, 566-571.	2.1	8
17	Phlpp1 is associated with human intervertebral disc degeneration and its deficiency promotes healing after needle puncture injury in mice. Cell Death and Disease, 2019, 10, 754.	6.3	22
18	Deficiency in the phosphatase PHLPP1 suppresses osteoclast-mediated bone resorption and enhances bone formation in mice. Journal of Biological Chemistry, 2019, 294, 11772-11784.	3.4	17

#	Article	IF	CITATIONS
19	Epigenetics as a New Frontier in Orthopedic Regenerative Medicine and Oncology. Journal of Orthopaedic Research, 2019, 37, 1465-1474.	2.3	49
20	The Deletion of <i>Hdac4</i> in Mouse Osteoblasts Influences Both Catabolic and Anabolic Effects in Bone. Journal of Bone and Mineral Research, 2018, 33, 1362-1375.	2.8	17
21	Phlpp inhibitors block pain and cartilage degradation associated with osteoarthritis. Journal of Orthopaedic Research, 2018, 36, 1487-1497.	2.3	19
22	Loss of Hdac3 in osteoprogenitors increases bone expression of osteoprotegerin, improving systemic insulin sensitivity. Journal of Cellular Physiology, 2018, 233, 2671-2680.	4.1	11
23	PTEN Loss Promotes Intratumoral Androgen Synthesis and Tumor Microenvironment Remodeling via Aberrant Activation of RUNX2 in Castration-Resistant Prostate Cancer. Clinical Cancer Research, 2018, 24, 834-846.	7.0	48
24	Loss of histone methyltransferase Ezh2 stimulates an osteogenic transcriptional program in chondrocytes but does not affect cartilage development. Journal of Biological Chemistry, 2018, 293, 19001-19011.	3.4	50
25	DNA methylation and FoxO3a regulate PHLPP1 expression in chondrocytes. Journal of Cellular Biochemistry, 2018, 119, 7470-7478.	2.6	6
26	Focusing on the Science: <i>JBMR</i> Manuscript Types. Journal of Bone and Mineral Research, 2018, 33, 1556-1557.	2.8	0
27	Enhancer of zeste homolog 2 (Ezh2) controls bone formation and cell cycle progression during osteogenesis in mice. Journal of Biological Chemistry, 2018, 293, 12894-12907.	3.4	63
28	Tissue-Nonspecific Alkaline Phosphatase Is Required for MC3T3 Osteoblast–Mediated Protection of Acute Myeloid Leukemia Cells from Apoptosis. Journal of Immunology, 2018, 201, 1086-1096.	0.8	11
29	Profiling of human epigenetic regulators using a semi-automated real-time qPCR platform validated by next generation sequencing. Gene, 2017, 609, 28-37.	2.2	25
30	Histone Deacetylase 3 Deletion in Mesenchymal Progenitor Cells Hinders Long Bone Development. Journal of Bone and Mineral Research, 2017, 32, 2453-2465.	2.8	27
31	Histone deacetylase 3 suppresses Erk phosphorylation and matrix metalloproteinase (Mmp)-13 activity in chondrocytes. Connective Tissue Research, 2017, 58, 27-36.	2.3	12
32	Histone deacetylase inhibitors reduce differentiating osteoblast-mediated protection of acute myeloid leukemia cells from cytarabine. Oncotarget, 2017, 8, 94569-94579.	1.8	4
33	<i>PPP6R3â€USP6</i> amplification: Novel oncogenic mechanism in malignant nodular fasciitis. Genes Chromosomes and Cancer, 2016, 55, 640-649.	2.8	43
34	Deletion of Estrogen Receptor Beta in Osteoprogenitor Cells Increases Trabecular but Not Cortical Bone Mass in Female Mice. Journal of Bone and Mineral Research, 2016, 31, 606-614.	2.8	35
35	RNAâ€seq analysis of clinicalâ€grade osteochondral allografts reveals activation of early response genes. Journal of Orthopaedic Research, 2016, 34, 1950-1959.	2.3	24
36	The synovial microenvironment of osteoarthritic joints alters RNA-seq expression profiles of human primary articular chondrocytes. Gene, 2016, 591, 456-464.	2.2	16

#	Article	IF	CITATIONS
37	The histone H3.3K36M mutation reprograms the epigenome of chondroblastomas. Science, 2016, 352, 1344-1348.	12.6	211
38	USP6 genetic rearrangements in cellular fibroma of tendon sheath. Modern Pathology, 2016, 29, 865-869.	5.5	51
39	Hdac3 Deficiency Increases Marrow Adiposity and Induces Lipid Storage and Glucocorticoid Metabolism in Osteochondroprogenitor Cells. Journal of Bone and Mineral Research, 2016, 31, 116-128.	2.8	58
40	Histone Deacetylases in Cartilage Homeostasis and Osteoarthritis. Current Rheumatology Reports, 2016, 18, 52.	4.7	38
41	Fusion gene profile of biphenotypic sinonasal sarcoma: an analysis of 44 cases. Histopathology, 2016, 69, 930-936.	2.9	76
42	Histone deacetylase 3 supports endochondral bone formation by controlling cytokine signaling and matrix remodeling. Science Signaling, 2016, 9, ra79.	3.6	60
43	Enhancer of Zeste Homolog 2 Inhibition Stimulates Bone Formation and Mitigates Bone Loss Caused by Ovariectomy in Skeletally Mature Mice. Journal of Biological Chemistry, 2016, 291, 24594-24606.	3.4	78
44	Osteoclast TGF-Î ² Receptor Signaling Induces Wnt1 Secretion and Couples Bone Resorption to Bone Formation. Journal of Bone and Mineral Research, 2016, 31, 76-85.	2.8	73
45	Wnt Signaling Inhibits Osteoclast Differentiation by Activating Canonical and Noncanonical cAMP/PKA Pathways. Journal of Bone and Mineral Research, 2016, 31, 65-75.	2.8	119
46	Identification of differentially methylated regions in new genes associated with knee osteoarthritis. Gene, 2016, 576, 312-318.	2.2	28
47	Response to Wnt Signaling Pathways. Journal of Bone and Mineral Research, 2015, 30, 2135-2136.	2.8	1
48	Conditional deletion of Hdac3 in osteoprogenitor cells attenuates diet-induced systemic metabolic dysfunction. Molecular and Cellular Endocrinology, 2015, 410, 42-51.	3.2	12
49	Use of RUNX2 Expression to Identify Osteogenic Progenitor Cells Derived from Human Embryonic Stem Cells. Stem Cell Reports, 2015, 4, 190-198.	4.8	37
50	Histone Deacetylase 7 (Hdac7) Suppresses Chondrocyte Proliferation and β-Catenin Activity during Endochondral Ossification. Journal of Biological Chemistry, 2015, 290, 118-126.	3.4	42
51	Deletion of the PH-domain and Leucine-rich Repeat Protein Phosphatase 1 (Phlpp1) Increases Fibroblast Growth Factor (Fgf) 18 Expression and Promotes Chondrocyte Proliferation. Journal of Biological Chemistry, 2015, 290, 16272-16280.	3.4	49
52	Chromatin modifiers and histone modifications in bone formation, regeneration, and therapeutic intervention for bone-related disease. Bone, 2015, 81, 739-745.	2.9	66
53	Ligament Tissue Engineering Using a Novel Porous Polycaprolactone Fumarate Scaffold and Adipose Tissue-Derived Mesenchymal Stem Cells Grown in Platelet Lysate. Tissue Engineering - Part A, 2015, 21, 2703-2713.	3.1	20
54	Histone Deacetylase Inhibitors Target the Leukemic Microenvironment by Enhancing a Nherf1-Protein Phosphatase 11±-TAZ Signaling Pathway in Osteoblasts. Journal of Biological Chemistry, 2015, 290, 29478-29492.	3.4	18

#	Article	IF	CITATIONS
55	Epigenetic Control of Skeletal Development by the Histone Methyltransferase Ezh2. Journal of Biological Chemistry, 2015, 290, 27604-27617.	3.4	144
56	Histone Deacetylases in Bone Development and Skeletal Disorders. Physiological Reviews, 2015, 95, 1359-1381.	28.8	122
57	Deletion of the intestinal plasma membrane calcium pump, isoform 1, Atp2b1 , in mice is associated with decreased bone mineral density and impaired responsiveness to 1, 25-dihydroxyvitamin D 3. Biochemical and Biophysical Research Communications, 2015, 467, 152-156.	2.1	40
58	Alterations in vitamin D metabolite, parathyroid hormone and fibroblast growth factor-23 concentrations in sclerostin-deficient mice permit the maintenance of a high bone mass. Journal of Steroid Biochemistry and Molecular Biology, 2015, 148, 225-231.	2.5	13
59	Histone Deacetylase Inhibition Destabilizes the Multiâ€Potent State of Uncommitted Adiposeâ€Derived Mesenchymal Stromal Cells. Journal of Cellular Physiology, 2015, 230, 52-62.	4.1	46
60	Biological Strategies for Improved Osseointegration and Osteoinduction of Porous Metal Orthopedic Implants. Tissue Engineering - Part B: Reviews, 2015, 21, 218-230.	4.8	135
61	Aberrant Bone Density in Aging Mice Lacking the Adenosine Transporter ENT1. PLoS ONE, 2014, 9, e88818.	2.5	22
62	Runx2 is required for early stages of endochondral bone formation but delays final stages of bone repair in Axin2-deficient mice. Bone, 2014, 66, 277-286.	2.9	41
63	RUNX3 Facilitates Growth of Ewing Sarcoma Cells. Journal of Cellular Physiology, 2014, 229, 2049-2056.	4.1	17
64	Osteoblasts Protect AML Cells From SDFâ€1â€Induced Apoptosis. Journal of Cellular Biochemistry, 2014, 115, 1128-1137.	2.6	32
65	Highâ€Resolution Molecular Validation of Selfâ€Renewal and Spontaneous Differentiation in Clinicalâ€Grade Adiposeâ€Tissue Derived Human Mesenchymal Stem Cells. Journal of Cellular Biochemistry, 2014, 115, 1816-1828.	2.6	142
66	Enhanced prostacyclin formation and Wnt signaling in sclerostin deficient osteocytes and bone. Biochemical and Biophysical Research Communications, 2014, 448, 83-88.	2.1	7
67	Recurrent PAX3-MAML3 fusion in biphenotypic sinonasal sarcoma. Nature Genetics, 2014, 46, 666-668.	21.4	133
68	Sclerostin deficient mice rapidly heal bone defects by activating Î ² -catenin and increasing intramembranous ossification. Biochemical and Biophysical Research Communications, 2013, 441, 886-890.	2.1	53
69	Histone Deacetylase Inhibition Promotes Osteoblast Maturation by Altering the Histone H4 Epigenome and Reduces Akt Phosphorylation. Journal of Biological Chemistry, 2013, 288, 28783-28791.	3.4	78
70	Transforming growth factor beta 1 induces CXCL16 and leukemia inhibitory factor expression in osteoclasts to modulate migration of osteoblast progenitors. Bone, 2013, 57, 68-75.	2.9	67
71	MicroRNA Functions in Osteogenesis and Dysfunctions in Osteoporosis. Current Osteoporosis Reports, 2013, 11, 72-82.	3.6	192
72	Histone deacetylase 3 is required for maintenance of bone mass during aging. Bone, 2013, 52, 296-307.	2.9	66

#	Article	IF	CITATIONS
73	Sphingosine 1-Phosphate (S1P) Receptors 1 and 2 Coordinately Induce Mesenchymal Cell Migration through S1P Activation of Complementary Kinase Pathways*. Journal of Biological Chemistry, 2013, 288, 5398-5406.	3.4	71
74	Sclerostin is expressed in osteoclasts from aged mice and reduces osteoclastâ€mediated stimulation of mineralization. Journal of Cellular Biochemistry, 2013, 114, 1901-1907.	2.6	55
75	Runx2 Protein Represses Axin2 Expression in Osteoblasts and Is Required for Craniosynostosis in Axin2-deficient Mice*. Journal of Biological Chemistry, 2013, 288, 5291-5302.	3.4	30
76	Histone Deacetylase 3 Suppression Increases PH Domain and Leucine-rich Repeat Phosphatase (Phlpp)1 Expression in Chondrocytes to Suppress Akt Signaling and Matrix Secretion. Journal of Biological Chemistry, 2013, 288, 9572-9582.	3.4	74
77	Sclerostin alters serum vitamin D metabolite and fibroblast growth factor 23 concentrations and the urinary excretion of calcium. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 6199-6204.	7.1	109
78	Update on Wnt signaling in bone cell biology and bone disease. Gene, 2012, 492, 1-18.	2.2	347
79	Histone deacetylases in skeletal development and bone mass maintenance. Gene, 2011, 474, 1-11.	2.2	95
80	Suberoylanilide hydroxamic acid (SAHA; vorinostat) causes bone loss by inhibiting immature osteoblasts. Bone, 2011, 48, 1117-1126.	2.9	68
81	Human Immunodeficiency Virus Envelope Protein Gp120 Induces Proliferation but Not Apoptosis in Osteoblasts at Physiologic Concentrations. PLoS ONE, 2011, 6, e24876.	2.5	8
82	Induction of fracture repair by mesenchymal cells derived from human embryonic stem cells or bone marrow. Journal of Orthopaedic Research, 2011, 29, 1804-1811.	2.3	28
83	FOXO1 Inhibits Runx2 Transcriptional Activity and Prostate Cancer Cell Migration and Invasion. Cancer Research, 2011, 71, 3257-3267.	0.9	135
84	Lef1ΔN Binds β-Catenin and Increases Osteoblast Activity and Trabecular Bone Mass. Journal of Biological Chemistry, 2011, 286, 10950-10959.	3.4	26
85	Bone morphogenic protein 2 directly enhances differentiation of murine osteoclast precursors. Journal of Cellular Biochemistry, 2010, 109, 672-682.	2.6	103
86	Regulation of gene expression in osteoblasts. BioFactors, 2010, 36, 25-32.	5.4	165
87	The Ewing's sarcoma fusion protein, EWSâ€FLI, binds Runx2 and blocks osteoblast differentiation. Journal of Cellular Biochemistry, 2010, 111, 933-943.	2.6	37
88	Concise Review: Insights from Normal Bone Remodeling and Stem Cell-Based Therapies for Bone Repair. Stem Cells, 2010, 28, 2124-2128.	3.2	73
89	Histone Deacetylase 3 Depletion in Osteo/Chondroprogenitor Cells Decreases Bone Density and Increases Marrow Fat. PLoS ONE, 2010, 5, e11492.	2.5	97
90	HDAC4 Represses Matrix Metalloproteinase-13 Transcription in Osteoblastic Cells, and Parathyroid Hormone Controls This Repression, lournal of Biological Chemistry, 2010, 285, 9616-9626.	3.4	79

#	Article	IF	CITATIONS
91	The Histone Deacetylase Inhibitor, Vorinostat, Reduces Tumor Growth at the Metastatic Bone Site and Associated Osteolysis, but Promotes Normal Bone Loss. Molecular Cancer Therapeutics, 2010, 9, 3210-3220.	4.1	47
92	Effect of Decorin and Dermatan Sulfate on the Mechanical Properties of a Neocartilage. Connective Tissue Research, 2010, 51, 159-170.	2.3	20
93	TEThered to Runx: Novel binding partners for runx factors. Blood Cells, Molecules, and Diseases, 2010, 45, 82-85.	1.4	24
94	Bone Morphogenic Protein 2 Activates Protein Kinase D to Regulate Histone Deacetylase 7 Localization and Repression of Runx2. Journal of Biological Chemistry, 2009, 284, 2225-2234.	3.4	61
95	Coâ€activator activator (CoAA) prevents the transcriptional activity of Runt domain transcription factors. Journal of Cellular Biochemistry, 2009, 108, 378-387.	2.6	19
96	Runx2 and bone morphogenic protein 2 regulate the expression of an alternative Lef1 transcript during osteoblast maturation. Journal of Cellular Physiology, 2009, 221, 480-489.	4.1	42
97	Wnt signaling during fracture repair. Current Osteoporosis Reports, 2009, 7, 64-69.	3.6	74
98	Influence of Bone Morphogenetic Protein-2 on the Extracellular Matrix, Material Properties, and Gene Expression of Long-Term Articular Chondrocyte Cultures: Loss of Chondrocyte Stability. Tissue Engineering - Part A, 2009, 15, 1247-1255.	3.1	15
99	Mesenchymal stem cells for bone repair and metabolic bone diseases. Mayo Clinic Proceedings, 2009, 84, 893-902.	3.0	86
100	Histone Deacetylase 7 Associates With Runx2 and Represses Its Activity During Osteoblast Maturation in a Deacetylation-Independent Manner. Journal of Bone and Mineral Research, 2008, 23, 361-372.	2.8	129
101	p68 (Ddx5) interacts with Runx2 and regulates osteoblast differentiation. Journal of Cellular Biochemistry, 2008, 103, 1438-1451.	2.6	64
102	Regulation of bone formation by osteoclasts involves Wnt/BMP signaling and the chemokine sphingosine-1-phosphate. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 20764-20769.	7.1	454
103	Building bone to reverse osteoporosis and repair fractures. Journal of Clinical Investigation, 2008, 118, 421-428.	8.2	318
104	Type I collagen receptor ({alpha}2{beta}1) signaling promotes the growth of human prostate cancer cells within the bone. Urologic Oncology: Seminars and Original Investigations, 2007, 25, 179-180.	1.6	2
105	Down-regulation of androgen receptor by 3,3′-diindolylmethane contributes to inhibition of cell proliferation and induction of apoptosis in both hormone-sensitive LNCaP and insensitive C4-2B prostate cancer cells. Urologic Oncology: Seminars and Original Investigations, 2007, 25, 180-181.	1.6	1
106	Glucocorticoids suppress tumor angiogenesis and in vivo growth of prostate cancer cells. Urologic Oncology: Seminars and Original Investigations, 2007, 25, 181-182.	1.6	1
107	Administration of zoledronic acid enhances the effects of docetaxel on growth of prostate cancer in the bone environment. Urologic Oncology: Seminars and Original Investigations, 2007, 25, 182.	1.6	0
108	Histone deacetylases in control of skeletogenesis. Journal of Cellular Biochemistry, 2007, 102, 332-340.	2.6	28

#	Article	IF	CITATIONS
109	Parathyroid Hormone Regulates Histone Deacetylases in Osteoblasts. Annals of the New York Academy of Sciences, 2007, 1116, 349-353.	3.8	21
110	Sarcoma Derived from Cultured Mesenchymal Stem Cells. Stem Cells, 2007, 25, 371-379.	3.2	601
111	Cell cycle related modulations in Runx2 protein levels are independent of lymphocyte enhancer-binding factor 1 (Lef1) in proliferating osteoblasts. Journal of Molecular Histology, 2007, 38, 501-506.	2.2	26
112	Lymphocyte enhancer-binding factor 1 (Lef1) inhibits terminal differentiation of osteoblasts. Journal of Cellular Biochemistry, 2006, 97, 969-983.	2.6	67
113	Transcriptional co-repressors of Runx2. Journal of Cellular Biochemistry, 2006, 98, 54-64.	2.6	103
114	Alterations in intranuclear localization of Runx2 affect biological activity. Journal of Cellular Physiology, 2006, 209, 935-942.	4.1	40
115	Osteosarcoma Derived from Cultured Mesenchymal Stem Cells Blood, 2006, 108, 2554-2554.	1.4	21
116	Histone Deacetylase Inhibitors Promote Osteoblast Maturation. Journal of Bone and Mineral Research, 2005, 20, 2254-2263.	2.8	218
117	Runx2: A master organizer of gene transcription in developing and maturing osteoblasts. Birth Defects Research Part C: Embryo Today Reviews, 2005, 75, 213-225.	3.6	259
118	Regulation of <i>relB</i> in dendritic cells by means of modulated association of vitamin D receptor and histone deacetylase 3 with the promoter. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 16007-16012.	7.1	83
119	The mammalian formin FHOD1 interacts with the ERK MAP kinase pathway. Biochemical and Biophysical Research Communications, 2005, 335, 1090-1094.	2.1	7
120	Src regulates the activity of the mammalian formin protein FHOD1. Biochemical and Biophysical Research Communications, 2005, 336, 1285-1291.	2.1	12
121	Mesenchymal Cancer Cells Can Arise from Ex Vivo Modified Mesenchymal Stem Cells Blood, 2005, 106, 4326-4326.	1.4	0
122	Histone Deacetylase 3 Interacts with Runx2 to Repress the Osteocalcin Promoter and Regulate Osteoblast Differentiation. Journal of Biological Chemistry, 2004, 279, 41998-42007.	3.4	218
123	Identification of FHOD1-binding proteins and mechanisms of FHOD1-regulated actin dynamics. Journal of Cellular Biochemistry, 2004, 92, 29-41.	2.6	19
124	Wnt signaling in osteoblasts and bone diseases. Gene, 2004, 341, 19-39.	2.2	724
125	Tumor promoter-induced MMP-13 gene expression in a model of initiated epidermis. Biochemical and Biophysical Research Communications, 2004, 317, 570-577.	2.1	10
126	Impaired In Vitro Osteogenesis in Multiple Myeloma Bone Marrow Osteoprogenitor Cells Blood, 2004, 104, 2349-2349.	1.4	0

8

#	Article	IF	CITATIONS
127	The formin-homology-domain-containing protein FHOD1 enhances cell migration. Journal of Cell Science, 2003, 116, 1745-1755.	2.0	72
128	Lymphoid Enhancer Factor-1 and ॆ-Catenin Inhibit Runx2-dependent Transcriptional Activation of the Osteocalcin Promoter. Journal of Biological Chemistry, 2003, 278, 11937-11944.	3.4	181
129	Regulation of Human Osteocalcin Promoter in Hormone-independent Human Prostate Cancer Cells. Journal of Biological Chemistry, 2002, 277, 2468-2476.	3.4	99
130	Runx2 (Cbfa1, AML-3) Interacts with Histone Deacetylase 6 and Represses the p21 CIP1/WAF1 Promoter. Molecular and Cellular Biology, 2002, 22, 7982-7992.	2.3	302
131	The Formin/Diaphanous-related Protein, FHOS, Interacts with Rac1 and Activates Transcription from the Serum Response Element. Journal of Biological Chemistry, 2001, 276, 46453-46459.	3.4	79
132	Expression of the AML-1 Oncogene Shortens the G1Phase of the Cell Cycle. Journal of Biological Chemistry, 2000, 275, 3438-3445.	3.4	93
133	The ETO Protein Disrupted in t(8;21)-Associated Acute Myeloid Leukemia Is a Corepressor for the Promyelocytic Leukemia Zinc Finger Protein. Molecular and Cellular Biology, 2000, 20, 2075-2086.	2.3	134
134	A Mechanism of Repression by Acute Myeloid Leukemia-1, the Target of Multiple Chromosomal Translocations in Acute Leukemia. Journal of Biological Chemistry, 2000, 275, 651-656.	3.4	228
135	Identification and characterization of a protein containing formin homology (FH1/FH2) domains. Gene, 1999, 232, 173-182.	2.2	53
136	Both TEL and AML-1 Contribute Repression Domains to the t(12;21) Fusion Protein. Molecular and Cellular Biology, 1999, 19, 6566-6574.	2.3	149
137	Mammalian runt-domain proteins and their roles in hematopoiesis, osteogenesis, and leukemia. Journal of Cellular Biochemistry, 1999, 75, 51-58.	2.6	8
138	ETO, a Target of t(8;21) in Acute Leukemia, Interacts with the N-CoR and mSin3 Corepressors. Molecular and Cellular Biology, 1998, 18, 7176-7184.	2.3	417
139	The t(8;21) Fusion Product, AML-1–ETO, Associates with C/EBP-α, Inhibits C/EBP-α-Dependent Transcription, and Blocks Granulocytic Differentiation. Molecular and Cellular Biology, 1998, 18, 322-333.	2.3	257
140	Transcriptional regulation during myelopoiesis. Molecular Biology Reports, 1997, 24, 157-168.	2.3	69