
RadosÅ,aw DÄ**b**ek

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/453279/publications.pdf Version: 2024-02-01

<u>Ραροςά αυν Πάτμβεκ</u>

#	Article	IF	CITATIONS
1	A review on plasma-catalytic methanation of carbon dioxide – Looking for an efficient catalyst. Renewable and Sustainable Energy Reviews, 2019, 116, 109427.	8.2	79
2	Low-pressure glow discharge plasma-assisted catalytic CO2 hydrogenation—The effect of metal oxide support on the performance of the Ni-based catalyst. Catalysis Today, 2019, 337, 182-194.	2.2	25
3	Mesoporous Beta zeolite functionalisation with FexCry oligocations; catalytic activity in the NH3SCO process. Microporous and Mesoporous Materials, 2019, 278, 1-13.	2.2	23
4	Operando FT-IR study on basicity improvement of Ni(Mg, Al)O hydrotalcite-derived catalysts promoted by glow plasma discharge. Plasma Science and Technology, 2019, 21, 045503.	0.7	11
5	Examination of the influence of La promotion on Ni state in hydrotalcite-derived catalysts under CO2 methanation reaction conditions: Operando X-ray absorption and emission spectroscopy investigation. Applied Catalysis B: Environmental, 2018, 232, 409-419.	10.8	87
6	Promotion effect of zirconia on Mg(Ni,Al)O mixed oxides derived from hydrotalcites in CO2 methane reforming. Applied Catalysis B: Environmental, 2018, 223, 36-46.	10.8	107
7	Porous clay heterostructures intercalated with multicomponent pillars as catalysts for dehydration of alcohols. Applied Clay Science, 2018, 160, 116-125.	2.6	35
8	Excess-methane dry and oxidative reforming on Ni-containing hydrotalcite-derived catalysts for biogas upgrading into synthesis gas. International Journal of Hydrogen Energy, 2018, 43, 11981-11989.	3.8	28
9	Influence of Ce/Zr molar ratio on catalytic performance of hydrotalcite-derived catalysts atÂlow temperature CO2 methane reforming. International Journal of Hydrogen Energy, 2017, 42, 23556-23567.	3.8	60
10	The influence of nickel content on the performance of hydrotalcite-derived catalysts in CO 2 methanation reaction. International Journal of Hydrogen Energy, 2017, 42, 23548-23555.	3.8	103
11	Ceria promotion over Ni-containing hydrotalcite-derived catalysts for CO ₂ methane reforming. E3S Web of Conferences, 2017, 14, 02039.	0.2	6
12	Catalytic activity of hydrotalcite-derived catalysts in the dry reforming of methane: on the effect of Ce promotion and feed gas composition. Reaction Kinetics, Mechanisms and Catalysis, 2017, 121, 185-208.	0.8	47
13	A Short Review on the Catalytic Activity of Hydrotalcite-Derived Materials for Dry Reforming of Methane. Catalysts, 2017, 7, 32.	1.6	96
14	La-promoted Ni-hydrotalcite-derived catalysts for dry reforming of methane at low temperatures. Fuel, 2016, 182, 8-16.	3.4	154
15	Novel Ni-La-hydrotalcite derived catalysts for CO2 methanation. Catalysis Communications, 2016, 83, 5-8.	1.6	139
16	Low temperature hybrid plasma-catalytic methanation over Ni-Ce-Zr hydrotalcite-derived catalysts. Catalysis Communications, 2016, 83, 14-17.	1.6	69
17	Nanooxides Derived from Hydrotalcites as Catalysts for Dry Methane Reforming Reaction - Effect of [Ni(EDTA)] ²⁻ Adsorption Time. Materials Science Forum, 2016, 879, 396-401.	0.3	1
18	Methane dry reforming over hydrotalcite-derived Ni–Mg–Al mixed oxides: the influence of Ni content on catalytic activity, selectivity and stability. Catalysis Science and Technology, 2016, 6, 6705-6715.	2.1	122

RadosÅ,aw DÄ™bek

#	Article	IF	CITATIONS
19	Low temperature dry methane reforming over Ce, Zr and CeZr promoted Ni–Mg–Al hydrotalcite-derived catalysts. International Journal of Hydrogen Energy, 2016, 41, 11616-11623.	3.8	113
20	Effect of nickel incorporation into hydrotalcite-based catalyst systems for dry reforming of methane. Research on Chemical Intermediates, 2015, 41, 9485-9495.	1.3	32
21	Ni-containing Ce-promoted hydrotalcite derived materials as catalysts for methane reforming with carbon dioxide at low temperature – On the effect of basicity. Catalysis Today, 2015, 257, 59-65.	2.2	153
22	Copper, cobalt and manganese: Modified hydrotalcite materials as catalysts for the selective catalytic reduction of NO with ammonia. The influence of manganese concentration. Comptes Rendus Chimie, 2015, 18, 1074-1083.	0.2	16
23	Ni–Al hydrotalcite-like material as the catalyst precursors for the dry reforming of methane at low temperature. Comptes Rendus Chimie, 2015, 18, 1205-1210.	0.2	36
24	Dehydration of methanol to dimethyl ether over modified vermiculites. Comptes Rendus Chimie, 2015, 18, 1211-1222.	0.2	19