Larry B Lessard

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/453261/publications.pdf

Version: 2024-02-01

99 4,614 35 65
papers citations h-index g-index

99 99 2767
all docs docs citations times ranked citing authors

#	Article	IF	Citations
1	Injectable, Poreâ€Forming, Perfusable Doubleâ€Network Hydrogels Resilient to Extreme Biomechanical Stimulations. Advanced Science, 2022, 9, e2102627.	11.2	28
2	Polylactic acid/recycled wind turbine glass fiber composites with enhanced mechanical properties and toughness. Journal of Applied Polymer Science, 2022, 139, .	2.6	6
3	A novel flax fibre composite material for stringed instrument fingerboards. Journal of Reinforced Plastics and Composites, 2022, 41, 670-678.	3.1	O
4	Architected cellular fiber-reinforced composite. Composites Part B: Engineering, 2022, 238, 109894.	12.0	7
5	Effect of adhesive layer compliance on strength of single-lap hybrid bonded-bolted joints. Composite Structures, 2021, 261, 113324.	5.8	23
6	An overview of additive manufacturing technologies for musical wind instruments. SN Applied Sciences, 2021, 3, 1.	2.9	6
7	Mechanical and thermal study of <scp>3D</scp> printing composite filaments from wind turbine waste. Polymer Composites, 2021, 42, 2305-2316.	4.6	18
8	Experimental and analytical investigation of <scp>3D</scp> printed specimens reinforced by different forms of recyclates from wind turbine waste. Polymer Composites, 2021, 42, 4533-4548.	4.6	10
9	A parametric study on static behavior and load sharing of multi-bolt hybrid bonded/bolted composite joints. Composites Part B: Engineering, 2021, 217, 108897.	12.0	31
10	Recycling and valorization of glass fibre thermoset composite waste by cold incorporation into a sustainable inorganic polymer matrix. Composites Part B: Engineering, 2021, 223, 109120.	12.0	12
11	An experimental study on the mechanical behaviour of bonded and hybrid bonded-bolted composite joints using digital image correlation (DIC) technique. Composite Structures, 2021, 276, 114544.	5.8	19
12	Experimental investigation of the effect of half gap/half overlap defects on the strength of composite structures fabricated using automated fibre placement (AFP). Composites Part A: Applied Science and Manufacturing, 2021, 150, 106610.	7.6	10
13	3Dâ€Printed Woodâ€Fiber Reinforced Architected Cellular Composites. Advanced Engineering Materials, 2020, 22, 2000565.	3.5	22
14	Bi-directional fluid-structure interaction for prediction of tip clearance influence on a composite ducted propeller. Ocean Engineering, 2020, 208, 107390.	4.3	5
15	Tensile properties and interfacial shear strength of recycled fibers from wind turbine waste. Composites Part A: Applied Science and Manufacturing, 2020, 131, 105786.	7.6	37
16	3Dâ€Printed Woodâ€Fiber Reinforced Architected Cellular Composites. Advanced Engineering Materials, 2020, 22, .	3.5	4
17	Recycling of fiberglass wind turbine blades into reinforced filaments for use in Additive Manufacturing. Composites Part B: Engineering, 2019, 175, 107101.	12.0	84
18	Mechanical characterization of a flexible epoxy adhesive for the design of hybrid bonded-bolted joints. Polymer Testing, 2019, 79, 106048.	4.8	23

#	Article	IF	CITATIONS
19	Tensile behaviour of hybrid fibre architectures of randomly oriented strands combined with laminate groups. Journal of Composite Materials, 2019, 53, 3725-3740.	2.4	5
20	Recycled Glass Fiber Composites from Wind Turbine Waste for 3D Printing Feedstock: Effects of Fiber Content and Interface on Mechanical Performance. Materials, 2019, 12, 3929.	2.9	44
21	Evolution of mechanical properties of flexible epoxy adhesives under cyclic loading and its effects on composite hybrid bolted/bonded joint design. Composite Structures, 2018, 189, 54-60.	5.8	25
22	Mechanical characterisation and modelling of randomly oriented strand architecture and their hybrids $\hat{a} \in \mathbb{C}$ A general review. Journal of Reinforced Plastics and Composites, 2018, 37, 548-580.	3.1	57
23	Micro-CT measurement of fibre misalignment: Application to carbon/epoxy laminates manufactured in autoclave and by vacuum assisted resin transfer moulding. Composites Part A: Applied Science and Manufacturing, 2018, 104, 14-23.	7.6	60
24	Banana fiber/low-density polyethylene recycled composites for third world eco-friendly construction applications â€" Waste for life project Sri Lanka. Journal of Reinforced Plastics and Composites, 2018, 37, 1322-1331.	3.1	14
25	Experimental Model of Impact Damage for Guided Wave-Based Inspection of Composites. Journal of Nondestructive Evaluation, Diagnostics and Prognostics of Engineering Systems, 2018, 1, 040801-040801-8.	0.9	4
26	Modelling of mechanical properties of randomly oriented strand thermoplastic composites. Journal of Composite Materials, 2017, 51, 831-845.	2.4	38
27	Investigation of bolted/bonded composite joint behaviour using design of experiments. Composite Structures, 2017, 170, 192-201.	5.8	69
28	Durability assessment of hybrid FRP composite shell and its application to prestressed concrete girders. Construction and Building Materials, 2017, 150, 114-122.	7.2	10
29	Interlaminar shear behaviour of hybrid fibre architectures of randomly oriented strands combined with laminate groups. Composite Structures, 2017, 176, 823-832.	5.8	14
30	Flow-control and hybridization strategies for thermoplastic stiffened panels of long discontinuous fibers. Journal of Reinforced Plastics and Composites, 2017, 36, 1327-1342.	3.1	1
31	Improving load sharing in hybrid bonded/bolted composite joints using an interference-fit bolt. Composite Structures, 2016, 149, 329-338.	5.8	66
32	A new finite element method for modeling delamination propagation without additional degrees of freedom. Composite Structures, 2016, 147, 82-98.	5.8	8
33	Analytical model for prediction of strength and fracture paths characteristic to randomly oriented strand (ROS) composites. Composites Part B: Engineering, 2016, 96, 103-111.	12.0	50
34	Finite element modeling of Lamb wave propagation in composite stepped joints. Journal of Reinforced Plastics and Composites, 2016, 35, 796-806.	3.1	8
35	Characterization of mechanical properties of randomly oriented strand thermoplastic composites. Journal of Composite Materials, 2016, 50, 2833-2851.	2.4	75
36	Hybrid bonded-fastened joints and their application in composite structures: A general review. Journal of Reinforced Plastics and Composites, 2016, 35, 764-781.	3.1	67

#	Article	IF	CITATIONS
37	Structural health monitoring of a composite skin-stringer assembly using within-the-bond strategy of guided wave propagation. Materials and Design, 2016, 90, 787-794.	7.0	33
38	Guided wave scattering behavior in composite bonded assemblies. Composite Structures, 2016, 136, 696-705.	5.8	28
39	Tension–tension fatigue behaviour of woven flax/epoxy composites. Journal of Reinforced Plastics and Composites, 2015, 34, 857-867.	3.1	51
40	Effect of Common Chemical Treatments on the Process Kinetics and Mechanical Properties of Flax/Epoxy Composites Manufactured by Resin Infusion. Journal of Polymers and the Environment, 2015, 23, 143-155.	5 . 0	5
41	Size-dependent behavior of laminates with curvilinear fibers made by automated fiber placement. Science and Engineering of Composite Materials, 2015, 22, 157-163.	1.4	4
42	An Overview of Fibre-Reinforced Composites for Musical Instrument Soundboards. Acoustics Australia, 2015, 43, 117-122.	2.4	12
43	Load sharing in single-lap bonded/bolted composite joints. Part II: Global sensitivity analysis. Composite Structures, 2015, 129, 276-283.	5.8	50
44	Load sharing in single-lap bonded/bolted composite joints. Part I: Model development and validation. Composite Structures, 2015, 129, 268-275.	5.8	53
45	Elastodynamics of a two-limb Sch \tilde{A} q nflies motion generator. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2015, 229, 751-764.	2.1	5
46	Nonlinear static analysis of a composite bonded/bolted single-lap joint using the meshfree radial point interpolation method. Composite Structures, 2015, 134, 1024-1035.	5.8	32
47	Multiscale finite element analysis of mode I delamination growth in a fabric composite. Composite Structures, 2015, 133, 157-165.	5.8	14
48	Application of composite materials to the chenda, an Indian percussion instrument. Applied Acoustics, 2015, 88, 1-5.	3.3	15
49	Optimum structural design of a two-limb Schönflies motion generator. Mechanism and Machine Theory, 2014, 80, 125-141.	4.5	8
50	A comparative study of metamodeling methods for the design optimization of variable stiffness composites. Composite Structures, 2014, 107, 494-501.	5.8	77
51	Optimization of variable stiffness composites with embedded defects induced by Automated Fiber Placement. Composite Structures, 2014, 107, 160-166.	5.8	116
52	Constraint-wrench analysis of robotic manipulators. Multibody System Dynamics, 2013, 29, 139-168.	2.7	6
53	Multi-objective optimization of a composite rotor blade cross-section. Composite Structures, 2013, 96, 75-81.	5.8	7
54	Defect layer method to capture effect of gaps and overlaps in variable stiffness laminates made by Automated Fiber Placement. Composite Structures, 2013, 97, 245-251.	5.8	112

#	Article	IF	CITATIONS
55	Characterization of flax/epoxy prepregs before and after cure. Journal of Reinforced Plastics and Composites, 2013, 32, 777-785.	3.1	35
56	Bond Characteristics between Fiber-Reinforced Polymer Composite Laminate and Prestressed Concrete. IABSE Symposium Report, 2013, , .	0.0	0
57	Application of natural fiber composites to musical instrument top plates. Journal of Composite Materials, 2012, 46, 145-154.	2.4	49
58	On the elastostatic analysis of mechanical systems. Mechanism and Machine Theory, 2012, 58, 202-216.	4.5	39
59	Numerical simulations for class A surface finish in resin transfer moulding process. Composites Part B: Engineering, 2012, 43, 819-824.	12.0	13
60	Surrogate-based multi-objective optimization of a composite laminate with curvilinear fibers. Composite Structures, 2012, 94, 2306-2313.	5.8	101
61	A non-dominated sorting hybrid algorithm for multi-objective optimization of engineering problems. Engineering Optimization, 2011, 43, 39-59.	2.6	50
62	Experimental study of the effect of automated fiber placement induced defects on performance of composite laminates. Composites Part A: Applied Science and Manufacturing, 2011, 42, 484-491.	7.6	224
63	Pareto frontier for simultaneous structural and manufacturing optimization of a composite part. Structural and Multidisciplinary Optimization, 2010, 40, 497-511.	3.5	18
64	Optimum Structural and Manufacturing Design of a Braided Hollow Composite Part. Applied Composite Materials, 2010, 17, 159-173.	2.5	21
65	Optimum stacking sequence design of composite materials Part II: Variable stiffness design. Composite Structures, 2010, 93, 1-13.	5.8	320
66	Design of a Carbon Fiber Bicycle Stem using a Novel Internal Bladder Resin Transfer Molding Technique. Advanced Composites Letters, 2010, 19, 096369351001900.	1.3	0
67	A Study of the Effect of Geometry Changes on the Structural Stiffness of a Composite D-Spar. , 2010, , .		0
68	Progressive Fatigue Damage Modeling of Cross-ply Laminates, II: Experimental Evaluation. Journal of Composite Materials, 2010, 44, 1261-1277.	2.4	40
69	Optimum stacking sequence design of composite materials Part I: Constant stiffness design. Composite Structures, 2009, 90, 1-11.	5.8	272
70	Optimization of RTM processing parameters for Class A surface finish. Composites Part B: Engineering, 2008, 39, 1280-1286.	12.0	33
71	Residual stiffness in cross-ply laminates subjected to cyclic loading. Composite Structures, 2008, 85, 205-212.	5.8	39
72	Constrained Globalized Nelder—Mead Method for Simultaneous Structural and Manufacturing Optimization of a Composite Bracket. Journal of Composite Materials, 2008, 42, 717-736.	2.4	32

#	Article	IF	Citations
73	Layer Separation for Optimization of Composite Laminates. , 2008, , .		5
74	Cure shrinkage characterization and modeling of a polyester resin containing low profile additives. Composites Part A: Applied Science and Manufacturing, 2007, 38, 994-1009.	7.6	91
75	An experimental investigation of class A surface finish of composites made by the resin transfer molding process. Composites Science and Technology, 2007, 67, 3176-3186.	7.8	34
76	Damage behavior of fiber reinforced composite plates subjected to drop weight impacts. Composites Science and Technology, 2006, 66, 61-68.	7.8	119
77	Parametric study of automotive composite bumper beams subjected to low-velocity impacts. Composite Structures, 2005, 68, 419-427.	5.8	91
78	An Experimental Study of Saturated and Unsaturated Permeabilities in Resin Transfer Molding Based on Unidirectional Flow Measurements. Journal of Reinforced Plastics and Composites, 2004, 23, 1515-1536.	3.1	31
79	Shear buckling of a composite drive shaft under torsion. Composite Structures, 2004, 64, 63-69.	5.8	67
80	A fully non-linear 3-D constitutive relationship for the stress analysis of a pin-loaded composite laminate. Composites Science and Technology, 2002, 62, 429-439.	7.8	15
81	Progressive Fatigue Damage Modeling of Composite Materials, Part I: Modeling. Journal of Composite Materials, 2000, 34, 1056-1080.	2.4	283
82	Progressive Fatigue Damage Modeling of Composite Materials, Part II: Material Characterization and Model Verification. Journal of Composite Materials, 2000, 34, 1081-1116.	2.4	161
83	Progressive Fatigue Damage Modeling of Composite Materials, Part I: Modeling. Journal of Composite Materials, 2000, 34, 1056-1080.	2.4	12
84	Progressive Fatigue Damage Modeling of Composite Materials, Part II: Material Characterization and Model Verification. Journal of Composite Materials, 2000, 34, 1081-1116.	2.4	3
85	Statistical model for multiaxial fatigue behavior of unidirectional plies. Composites Science and Technology, 1999, 59, 2025-2035.	7.8	30
86	Title is missing!. Applied Composite Materials, 1998, 5, 289-304.	2.5	20
87	Title is missing!. Applied Composite Materials, 1998, 5, 49-64.	2.5	12
88	A closed-form solution for stresses at curved free edges in composite laminates: A variational approach. Composites Science and Technology, 1997, 57, 1341-1354.	7.8	15
89	Three-dimensional stress analysis of free-edge effects in a simple composite cross-ply laminate. International Journal of Solids and Structures, 1996, 33, 2243-2259.	2.7	48
90	Effects of Material Nonlinearity on the Three-Dimensional Stress State of Pin-Loaded Composite Laminates. Journal of Composite Materials, 1996, 30, 839-861.	2.4	39

#	Article	IF	CITATIONS
91	Utilization of FEA in the design of composite bicycle frames. Composites, 1995, 26, 72-74.	0.7	29
92	Testing of In-Plane Shear Properties under Fatigue Loading. Journal of Reinforced Plastics and Composites, 1995, 14, 965-987.	3.1	20
93	Two-Dimensional Modeling of Composite Pinned-Joint Failure. Journal of Composite Materials, 1995, 29, 671-697.	2.4	121
94	Fatique and damage-tolerance analysis of composite laminates: Stiffness loss, damage-modelling, and life prediction. Composites Science and Technology, 1994, 51, 43-51.	7.8	58
95	Damage Tolerance of Laminated Composites Containing an Open Hole and Subjected to Compressive Loadings: Part Iâ€"Analysis. Journal of Composite Materials, 1991, 25, 2-43.	2.4	331
96	Damage Tolerance of Laminated Composites Containing an Open Hole and Subjected to Compressive Loadings: Part Ilâ€"Experiment. Journal of Composite Materials, 1991, 25, 44-64.	2.4	74
97	Effect of Load Distribution on the Fiber Buckling Strength of Unidirectional Composites. Journal of Composite Materials, 1991, 25, 65-87.	2.4	28
98	Characterization of Guided Waves Propagation in a Composite Skin-stringer Assembly. , 0, , .		1
99	Selection of Structural Features for the Systematic Study of Guided Wave Propagation and Interaction with Damage. , 0, , .		2