Frederic Barlat

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4532429/publications.pdf Version: 2024-02-01

		19636	17580
305	17,184	61	121
papers	citations	h-index	g-index
313	313	313	4106
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Plane stress yield function for aluminum alloy sheets—part 1: theory. International Journal of Plasticity, 2003, 19, 1297-1319.	4.1	1,405
2	Plastic behavior and stretchability of sheet metals. Part I: A yield function for orthotropic sheets under plane stress conditions. International Journal of Plasticity, 1989, 5, 51-66.	4.1	1,040
3	A six-component yield function for anisotropic materials. International Journal of Plasticity, 1991, 7, 693-712.	4.1	895
4	Linear transfomation-based anisotropic yield functions. International Journal of Plasticity, 2005, 21, 1009-1039.	4.1	824
5	Orthotropic yield criterion for hexagonal closed packed metals. International Journal of Plasticity, 2006, 22, 1171-1194.	4.1	649
6	A criterion for description of anisotropy and yield differential effects in pressure-insensitive metals. International Journal of Plasticity, 2004, 20, 2027-2045.	4.1	422
7	An alternative to kinematic hardening in classical plasticity. International Journal of Plasticity, 2011, 27, 1309-1327.	4.1	330
8	Prediction of six or eight ears in a drawn cup based on a new anisotropic yield function. International Journal of Plasticity, 2006, 22, 174-193.	4.1	270
9	Orthotropic yield criteria for description of the anisotropy in tension and compression of sheet metals. International Journal of Plasticity, 2008, 24, 847-866.	4.1	258
10	Generalization of Drucker's Yield Criterion to Orthotropy. Mathematics and Mechanics of Solids, 2001, 6, 613-630.	1.5	257
11	Plane stress yield function for aluminum alloy sheets—part II: FE formulation and its implementation. International Journal of Plasticity, 2004, 20, 495-522.	4.1	253
12	Strain rate sensitivity of the commercial aluminum alloy AA5182-O. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2005, 390, 334-343.	2.6	250
13	Crystallographic texture, anisotropic yield surfaces and forming limits of sheet metals. Materials Science and Engineering, 1987, 91, 55-72.	0.1	242
14	Continuous, large strain, tension/compression testing of sheet material. International Journal of Plasticity, 2005, 21, 2319-2343.	4.1	224
15	Advances in anisotropy and formability. International Journal of Material Forming, 2010, 3, 165-189.	0.9	204
16	On linear transformations of stress tensors for the description of plastic anisotropy. International Journal of Plasticity, 2007, 23, 876-896.	4.1	201
17	A simple model for dislocation behavior, strain and strain rate hardening evolution in deforming aluminum alloys. International Journal of Plasticity, 2002, 18, 919-939.	4.1	184
18	Anisotropic yield function of hexagonal materials taking into account texture development and anisotropic hardening. Acta Materialia, 2006, 54, 4159-4169.	3.8	184

#	Article	IF	CITATIONS
19	Prediction of tricomponent plane stress yield surfaces and associated flow and failure behavior of strongly textured f.c.c. polycrystalline sheets. Materials Science and Engineering, 1987, 95, 15-29.	0.1	178
20	Characterization of the post-necking strain hardening behavior using the virtual fields method. International Journal of Solids and Structures, 2013, 50, 3829-3842.	1.3	177
21	Extension of homogeneous anisotropic hardening model to cross-loading with latent effects. International Journal of Plasticity, 2013, 46, 130-142.	4.1	170
22	Prediction of the forming limit diagrams of anisotropic sheets in linear and non-linear loading. Materials Science and Engineering, 1985, 68, 151-164.	0.1	154
23	Experimental and theoretical formability analysis using strain and stress based forming limit diagram for advanced high strength steels. Materials & Design, 2013, 51, 756-766.	5.1	147
24	Enhancements of homogenous anisotropic hardening model and application to mild and dual-phase steels. International Journal of Plasticity, 2014, 58, 201-218.	4.1	140
25	Correlations between nanoindentation hardness and macroscopic mechanical properties in DP980 steels. Materials Science & amp; Engineering A: Structural Materials: Properties, Microstructure and Processing, 2014, 597, 431-439.	2.6	137
26	Spring-back evaluation of automotive sheets based on isotropic-kinematic hardening laws and non-quadratic anisotropic yield functions. International Journal of Plasticity, 2005, 21, 861-882.	4.1	136
27	Application of the theory of representation to describe yielding of anisotropic aluminum alloys. International Journal of Engineering Science, 2003, 41, 1367-1385.	2.7	135
28	Work-hardening model for polycrystalline metals under strain reversal at large strains. Acta Materialia, 2007, 55, 2939-2948.	3.8	135
29	Material modeling of 6016-O and 6016-T4 aluminum alloy sheets and application to hole expansion forming simulation. International Journal of Plasticity, 2017, 93, 164-186.	4.1	135
30	Plastic flow for non-monotonic loading conditions of an aluminum alloy sheet sample. International Journal of Plasticity, 2003, 19, 1215-1244.	4.1	134
31	A crystallographic dislocation model for describing hardening of polycrystals during strain path changes. Application to low carbon steels. International Journal of Plasticity, 2013, 46, 54-69.	4.1	130
32	Earing predictions based on asymmetric nonquadratic yield function. International Journal of Plasticity, 2000, 16, 1075-1104.	4.1	127
33	Effect of texture and microstructure on strain hardening anisotropy for aluminum deformed in uniaxial tension and simple shear. International Journal of Plasticity, 2003, 19, 1-22.	4.1	126
34	New convex yield functions for orthotropic metal plasticity. International Journal of Non-Linear Mechanics, 2013, 51, 97-111.	1.4	126
35	Finite element modeling using homogeneous anisotropic hardening and application to spring-back prediction. International Journal of Plasticity, 2012, 29, 13-41.	4.1	121
36	Plastic behaviour and stretchability of sheet metals. Part II: Effect of yield surface shape on sheet forming limit. International Journal of Plasticity, 1989, 5, 131-147.	4.1	119

#	Article	IF	CITATIONS
37	Artificial aging and shear deformation behaviour of 6022 aluminium alloy. International Journal of Plasticity, 2004, 20, 427-445.	4.1	119
38	Formability of AA5182/polypropylene/AA5182 sandwich sheets. Journal of Materials Processing Technology, 2003, 139, 1-7.	3.1	111
39	Strain rate dependent tensile behavior of advanced high strength steels: Experiment and constitutive modeling. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2013, 559, 222-231.	2.6	109
40	A general elasto-plastic finite element formulation based on incremental deformation theory for planar anisotropy and its application to sheet metal forming. International Journal of Plasticity, 1999, 15, 35-67.	4.1	96
41	An application of homogeneous anisotropic hardening to springback prediction in pre-strained U-draw/bending. International Journal of Solids and Structures, 2012, 49, 3562-3572.	1.3	96
42	Mechanical behavior of Mg subjected to strain path changes: Experiments and modeling. International Journal of Plasticity, 2015, 73, 171-183.	4.1	92
43	Anisotropic strain hardening behavior in simple shear for cube textured aluminum alloy sheets. International Journal of Plasticity, 2005, 21, 2426-2447.	4.1	85
44	Elastic-viscoplastic anisotropic modeling of textured metals and validation using the Taylor cylinder impact test. International Journal of Plasticity, 2007, 23, 1001-1021.	4.1	85
45	Experiment and modeling to investigate the effect of stress state, strain and temperature on martensitic phase transformation in TRIP-assisted steel. Acta Materialia, 2015, 97, 435-444.	3.8	85
46	Strain rate potential for metals and its application to minimum plastic work path calculations. International Journal of Plasticity, 1993, 9, 51-63.	4.1	83
47	Extension of quasi-plastic–elastic approach to incorporate complex plastic flow behavior – application to springback of advanced high-strength steels. International Journal of Plasticity, 2013, 45, 140-159.	4.1	83
48	Strain hardening response and modeling of EDDQ and DP780 steel sheet under non-linear strain path. Mechanics of Materials, 2013, 64, 11-26.	1.7	83
49	Crystal plasticity approach for predicting the Bauschinger effect in dual-phase steels. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2012, 539, 259-270.	2.6	81
50	Nonlinear elastic behaviors of low and high strength steels in unloading and reloading. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2013, 562, 161-171.	2.6	81
51	Comparative study of the prediction of microstructure and mechanical properties for a hot-stamped B-pillar reinforcing part. International Journal of Mechanical Sciences, 2011, 53, 744-752.	3.6	78
52	A new analytical theory for earing generated from anisotropic plasticity. International Journal of Plasticity, 2011, 27, 1165-1184.	4.1	78
53	Determination of Anisotropic Plastic Constitutive Parameters Using the Virtual Fields Method. Experimental Mechanics, 2014, 54, 1189-1204.	1.1	76
54	Finite element simulation of sheet forming based on a planar anisotropic strain-rate potential. International Journal of Plasticity, 1996, 12, 93-115.	4.1	71

#	Article	IF	CITATIONS
55	A comparison of the mechanical behaviour of an AA1050 and a low carbon steel deformed upon strain reversal. Acta Materialia, 2005, 53, 1005-1013.	3.8	71
56	Characterization of fracture in medium Mn steel. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2017, 687, 200-210.	2.6	70
57	Strain hardening rate sensitivity and strain rate sensitivity in TWIP steels. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2015, 629, 54-59.	2.6	69
58	The forming limit diagram of ferritic stainless steel sheets: Experiments and modeling. International Journal of Mechanical Sciences, 2012, 64, 1-10.	3.6	68
59	Macroscopic anisotropy in AA5019A sheets. Acta Materialia, 2000, 48, 1853-1863.	3.8	66
60	Constitutive and friction modeling for accurate springback analysis of advanced high strength steel sheets. International Journal of Plasticity, 2015, 71, 113-135.	4.1	66
61	An effective computational algorithm for rate-independent crystal plasticity based on a single crystal yield surface with an application to tube hydroforming. International Journal of Plasticity, 2007, 23, 1126-1147.	4.1	64
62	Effect of martensitic phase transformation on the behavior of 304 austenitic stainless steel under tension. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2016, 649, 174-183.	2.6	63
63	Formability prediction of advanced high strength steels using constitutive models characterized by uniaxial and biaxial experiments. Journal of Materials Processing Technology, 2013, 213, 1929-1942.	3.1	61
64	Mechanical behavior of low carbon steel subjected to strain path changes: Experiments and modeling. Acta Materialia, 2016, 111, 305-314.	3.8	61
65	Characterization and modeling of the mechanical behavior and formability of a 2008-T4 sheet sample. International Journal of Mechanical Sciences, 1989, 31, 549-563.	3.6	60
66	A novel approach for anisotropic hardening modeling. Part I: Theory and its application to finite element analysis of deep drawing. International Journal of Plasticity, 2009, 25, 2383-2409.	4.1	60
67	Finite element method for sheet forming based on an anisotropic strain-rate potential and the convected coordinate system. International Journal of Mechanical Sciences, 1995, 37, 733-752.	3.6	59
68	Development of a one point quadrature shell element for nonlinear applications with contact and anisotropy. Computer Methods in Applied Mechanics and Engineering, 2002, 191, 5177-5206.	3.4	57
69	An extended Modified Maximum Force Criterion for the prediction of localized necking under non-proportional loading. International Journal of Plasticity, 2015, 75, 189-203.	4.1	57
70	Creep and anelasticity in the springback of aluminum. International Journal of Plasticity, 2004, 20, 2209-2232.	4.1	54
71	Thermo-mechanical-metallurgical modeling for hot-press forming in consideration of the prior austenite deformation effect. International Journal of Plasticity, 2014, 58, 154-183.	4.1	54
72	Mechanical, microstructural behaviour and modelling of dual phase steels under complex deformation paths. International Journal of Plasticity, 2017, 93, 269-290.	4.1	53

#	Article	IF	CITATIONS
73	Anisotropic potentials for plastically deforming metals. Modelling and Simulation in Materials Science and Engineering, 1993, 1, 403-416.	0.8	52
74	Modeling of localization and fracture phenomena in strain and stress space for sheet metal forming. International Journal of Material Forming, 2016, 9, 573-584.	0.9	52
75	Non-quadratic anisotropic potentials based on linear transformation of plastic strain rate. International Journal of Plasticity, 2007, 23, 1380-1399.	4.1	51
76	Anticlastic curvature in draw-bend springback. International Journal of Solids and Structures, 2005, 42, 1287-1307.	1.3	50
77	Measurement and modeling of simple shear deformation under load reversal: Application to advanced high strength steels. International Journal of Mechanical Sciences, 2015, 98, 144-156.	3.6	50
78	Advances in anisotropy of plastic behaviour and formability of sheet metals. International Journal of Material Forming, 2020, 13, 749-787.	0.9	50
79	Stress integration schemes for novel homogeneous anisotropic hardening model. Computer Methods in Applied Mechanics and Engineering, 2012, 247-248, 73-92.	3.4	49
80	Formability of austenitic and ferritic stainless steels at warm forming temperature. International Journal of Mechanical Sciences, 2013, 75, 94-109.	3.6	49
81	An elasto-plastic constitutive model with plastic strain rate potentials for anisotropic cubic metals. International Journal of Plasticity, 2008, 24, 2298-2334.	4.1	48
82	Delamination cracking in advanced aluminum–lithium alloys – Experimental and computational studies. Engineering Fracture Mechanics, 2009, 76, 2174-2191.	2.0	48
83	Combined effects of anisotropy and tension–compression asymmetry on the torsional response of AZ31 Mg. International Journal of Solids and Structures, 2015, 58, 190-200.	1.3	48
84	Two-stage forming approach for manufacturing ferritic stainless steel bipolar plates in PEM fuel cell: Experiments and numerical simulations. International Journal of Hydrogen Energy, 2017, 42, 6965-6977.	3.8	48
85	Distortional plasticity framework with application to advanced high strength steel. International Journal of Solids and Structures, 2020, 202, 947-962.	1.3	47
86	Advanced constitutive modeling of advanced high strength steel sheets for springback prediction after double stage U-draw bending. International Journal of Solids and Structures, 2018, 151, 152-164.	1.3	46
87	Constitutive modeling for path-dependent behavior and its influence on twist springback. International Journal of Plasticity, 2017, 93, 64-88.	4.1	45
88	Parameter identification of advanced plastic strain rate potentials and impact on plastic anisotropy prediction. International Journal of Plasticity, 2009, 25, 491-512.	4.1	44
89	The effect of plastic anisotropy on compressive instability in sheet metal forming. International Journal of Plasticity, 2000, 16, 649-676.	4.1	43
90	Numerical and experimental study of the cold expansion process in 7085 plate using a modified split sleeve. Journal of Materials Processing Technology, 2007, 189, 45-57.	3.1	43

#	Article	IF	CITATIONS
91	Deformation-induced anisotropy of uniaxially prestrained steel sheets. International Journal of Solids and Structures, 2018, 134, 20-29.	1.3	43
92	Finite element modeling of tube hydroforming of polycrystalline aluminum alloy extrusions. International Journal of Plasticity, 2006, 22, 2366-2393.	4.1	42
93	Experimental assessment of nonlinear elastic behaviour of dual-phase steels and application to springback prediction. International Journal of Mechanical Sciences, 2016, 117, 1-15.	3.6	42
94	Piecewise linear approximation of nonlinear unloading-reloading behaviors using a multi-surface approach. International Journal of Plasticity, 2017, 93, 112-136.	4.1	42
95	Crystal plasticity finite element analysis of ferritic stainless steel for sheet formability prediction. International Journal of Plasticity, 2017, 93, 26-45.	4.1	41
96	Spring-back evaluation of automotive sheets based on isotropic-kinematic hardening laws and non-quadratic anisotropic yield functionsPart I: theory and formulation. International Journal of Plasticity, 2005, 21, 861-882.	4.1	40
97	Analysis of sheet metal formability through isotropic and kinematic hardening models. European Journal of Mechanics, A/Solids, 2011, 30, 532-546.	2.1	40
98	Non-isothermal kinetics model to predict accurate phase transformation and hardness of 22MnB5 boron steel. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2015, 626, 67-73.	2.6	40
99	Modelling and sensitivity analysis of twist springback in deep drawing of dual-phase steel. Materials and Design, 2016, 90, 204-217.	3.3	40
100	A crystal plasticity model for describing the anisotropic hardening behavior of steel sheets during strain-path changes. International Journal of Plasticity, 2018, 111, 85-106.	4.1	40
101	Asymmetric rolling of thin AA-5182 sheets: Modelling and experiments. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2014, 603, 150-159.	2.6	39
102	Convex polynomial yield functions. Journal of the Mechanics and Physics of Solids, 2010, 58, 1804-1818.	2.3	38
103	A novel approach for anisotropic hardening modeling. Part II: Anisotropic hardening in proportional and non-proportional loadings, application to initially isotropic material. International Journal of Plasticity, 2010, 26, 1029-1049.	4.1	38
104	Hole expansion of twinning-induced plasticity steel. Scripta Materialia, 2012, 66, 1012-1017.	2.6	38
105	Damage mechanism and modeling of void nucleation process in a ferrite–martensite dual phase steel. Engineering Fracture Mechanics, 2014, 127, 97-103.	2.0	38
106	On precipitate induced hardening in crystal plasticity: theory. International Journal of Plasticity, 2004, 20, 477-494.	4.1	37
107	Mechanical behavior of an asymmetrically rolled and annealed 1050-O sheet. International Journal of Mechanical Sciences, 2008, 50, 1372-1380.	3.6	37
108	Experimental and Analytical Investigations on Plane Strain Toughness for 7085 Aluminum Alloy. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2009, 40, 365-376.	1.1	37

#	Article	IF	CITATIONS
109	Parameter reduction for the Yld2004-18p yield criterion. International Journal of Material Forming, 2016, 9, 175-178.	0.9	37
110	Investigation of plastic strain rate under strain path changes in dual-phase steel using microstructure-based modeling. International Journal of Plasticity, 2017, 93, 89-111.	4.1	37
111	A comparative study between elasto-plastic self-consistent crystal plasticity and anisotropic yield function with distortional hardening formulations for sheet metal forming. Mechanics of Materials, 2020, 148, 103422.	1.7	34
112	Correlation between swift effects and tension–compression asymmetry in various polycrystalline materials. Journal of the Mechanics and Physics of Solids, 2014, 70, 104-115.	2.3	33
113	A general linear method to evaluate the hardening behaviour of metals at large strain with fullâ€field measurements. Strain, 2018, 54, e12265.	1.4	33
114	Inverse identification strategies for the characterization of transformation-based anisotropic plasticity models with the non-linear VFM. International Journal of Mechanical Sciences, 2020, 173, 105422.	3.6	33
115	Transformation kinetics and density models of quenching and partitioning (Q&P) steels. Acta Materialia, 2016, 109, 394-404.	3.8	32
116	A dislocation-based hardening model incorporated into an anisotropic hardening approach. Computational Materials Science, 2013, 79, 570-583.	1.4	31
117	Balanced Biaxial Testing of Advanced High Strength Steels in Warm Conditions. Experimental Mechanics, 2013, 53, 1681-1692.	1.1	31
118	On twist springback prediction of asymmetric tube in rotary draw bending with different constitutive models. International Journal of Mechanical Sciences, 2014, 89, 311-322.	3.6	31
119	Stress update algorithm for enhanced homogeneous anisotropic hardening model. Computer Methods in Applied Mechanics and Engineering, 2015, 286, 63-86.	3.4	31
120	EBSD Study of Damage Mechanisms in a High-Strength Ferrite-Martensite Dual-Phase Steel. Journal of Materials Engineering and Performance, 2015, 24, 53-58.	1.2	31
121	A microstructure-based model for describing the material properties of Al–Zn alloys during high pressure torsion. International Journal of Plasticity, 2015, 68, 150-163.	4.1	31
122	Asymmetric rolling of interstitial free steel sheets: Microstructural evolution and mechanical properties. Journal of Manufacturing Processes, 2018, 31, 583-592.	2.8	31
123	Numerical modeling for accurate prediction of strain localization in hole expansion of a steel sheet. International Journal of Solids and Structures, 2019, 156-157, 107-118.	1.3	31
124	Constitutive modelling of high strength titanium alloy Ti-6Al-4ÂV for sheet forming applications at room temperature. International Journal of Solids and Structures, 2016, 80, 334-347.	1.3	30
125	Modelling direction-dependent hardening in magnesium sheet forming simulations. International Journal of Material Forming, 2011, 4, 243-253.	0.9	29
126	Properties controlling the bend-assisted fracture of AHSS. International Journal of Plasticity, 2015, 75, 100-120.	4.1	29

#	Article	IF	CITATIONS
127	Modified Kocks–Mecking–Estrin Model to Account Nonlinear Strain Hardening. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2019, 50, 513-517.	1.1	29
128	On crystallographic texture gradient and its mechanical consequence in rolled aluminum-lithium sheet. Scripta Metallurgica Et Materialia, 1992, 27, 1121-1126.	1.0	28
129	Investigation into wrinkling behavior in the elliptical cup deep drawing process by finite element analysis using bifurcation theory. Journal of Materials Processing Technology, 2001, 111, 170-174.	3.1	28
130	Measurements of anisotropic yielding, bauschinger and transient behavior of automotive dual-phase steel sheets. Metals and Materials International, 2003, 9, 561-570.	1.8	28
131	Evaluation of Fracture Micromechanisms in a Fineâ€Grained Dual Phase Steel during Uniaxial Tensile Deformation. Steel Research International, 2014, 85, 1386-1392.	1.0	28
132	Isotropic to distortional hardening transition in metal plasticity. International Journal of Solids and Structures, 2015, 56-57, 11-19.	1.3	28
133	Observations on the Nonlinear Unloading Behavior of Advanced High Strength Steels. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2015, 46, 18-22.	1.1	28
134	A comparative study between micro- and macro-mechanical constitutive models developed for complex loading scenarios. International Journal of Plasticity, 2017, 93, 212-228.	4.1	28
135	Advanced constitutive model for repeated stress relaxation accounting for transient mobile dislocation density and internal stress. Mechanics of Materials, 2019, 133, 138-153.	1.7	27
136	Influence of precipitate microstructure on flow and forming properties of an aluminum alloy sheet. Acta Metallurgica Et Materialia, 1991, 39, 391-400.	1.9	26
137	Evaluation of biaxial flow stress based on elasto-viscoplastic self-consistent analysis of X-ray diffraction measurements. International Journal of Plasticity, 2015, 66, 103-118.	4.1	26
138	Evaluation of Springback for DP980 S Rail Using Anisotropic Hardening Models. Jom, 2016, 68, 1850-1857.	0.9	26
139	Application of the virtual fields method to the identification of the homogeneous anisotropic hardening parameters for advanced high strength steels. International Journal of Plasticity, 2017, 93, 229-250.	4.1	26
140	Numerical integration algorithm of updated homogeneous anisotropic hardening model through finite element framework. Computer Methods in Applied Mechanics and Engineering, 2020, 372, 113449.	3.4	26
141	Validation of homogeneous anisotropic hardening model using non-linear strain path experiments. International Journal of Mechanical Sciences, 2020, 183, 105769.	3.6	26
142	Hot Press Forming of Tailor Welded Blank: Experiments and FE Modeling. ISIJ International, 2012, 52, 2059-2068.	0.6	25
143	Measurement of the strength differential effect of DP980 steel sheet and experimental validation using pure bending test. Journal of Materials Processing Technology, 2018, 256, 247-253.	3.1	25
144	Texture evolution of FCC sheet metals during deep drawing process. International Journal of Mechanical Sciences, 2000, 42, 1571-1592.	3.6	24

#	Article	IF	CITATIONS
145	Experiments and Modeling of Low Carbon Steel Sheet Subjected to Double Strain Path Changes. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2013, 44, 4475-4479.	1.1	24
146	Identification of nonlinear kinematic hardening constitutive model parameters using the virtual fields method for advanced high strength steels. International Journal of Solids and Structures, 2016, 102-103, 30-43.	1.3	24
147	Anisotropy and Formability. , 2007, , 143-173.		23
148	Determining the coefficients of a homogeneous anisotropic hardening model for ultrathin steel sheets. International Journal of Mechanical Sciences, 2019, 157-158, 428-438.	3.6	23
149	Experimental and theoretical plasticity analyses of steel materials deformed under a nonlinear strain path. International Journal of Mechanical Sciences, 2020, 182, 105770.	3.6	23
150	Hole expansion of advanced high strenth steel sheet sample. International Journal of Material Forming, 2010, 3, 247-250.	0.9	22
151	A study of the Yld2004 yield function and one extension in polynomial form: AÂnew implementation algorithm, modeling range, and earing predictions for aluminum alloy sheets. European Journal of Mechanics, A/Solids, 2011, 30, 807-819.	2.1	21
152	Effect of nonlinear multi-axial elasticity and anisotropic plasticity on quasi-static dent properties of automotive steel sheets. International Journal of Solids and Structures, 2016, 87, 254-266.	1.3	21
153	Fracture characteristics of advanced high strength steels during hole expansion test. International Journal of Fracture, 2020, 224, 217-233.	1.1	21
154	New interpretation of monotonic Swift effects: Role of tension–compression asymmetry. Mechanics of Materials, 2013, 57, 42-52.	1.7	20
155	Multiâ€Objective Genetic Algorithm to Optimize Variable Drawbead Geometry for Tailor Welded Blanks Made of Dissimilar Steels. Steel Research International, 2014, 85, 1597-1607.	1.0	20
156	Mechanism of the Bauschinger effect in Al-Ge-Si alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2017, 684, 353-372.	2.6	20
157	Void coalescence and fracture behavior of notched and un-notched tensile tested specimens in fine grain dual phase steel. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2015, 644, 210-217.	2.6	19
158	Determination of Anisotropic Yield Coefficients by a Data-Driven Multiobjective Evolutionary and Genetic Algorithm. Materials and Manufacturing Processes, 2015, 30, 403-413.	2.7	19
159	Stress development and shape change during press-hardening process using phase-transformation-based finite element analysis. International Journal of Plasticity, 2015, 73, 142-170.	4.1	19
160	Thermomechanical response of a TWIP steel during monotonic and non-monotonic uniaxial loading. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2016, 674, 276-285.	2.6	19
161	Numerical investigation of the post-necking behavior of aluminum sheets in the presence of geometrical and material inhomogeneities. International Journal of Solids and Structures, 2016, 102-103, 56-65.	1.3	19
162	Continuous strain path change simulations for sheet metal. Computational Materials Science, 2014, 82, 286-292.	1.4	18

#	Article	IF	CITATIONS
163	Analysis of ESAFORM 2021 cup drawing benchmark of an Al alloy, critical factors for accuracy and efficiency of FE simulations. International Journal of Material Forming, 2022, 15, .	0.9	18
164	Microstructural effects on yield surface evolution in cubic metals using the viscoplastic Ï+-model. International Journal of Plasticity, 2011, 27, 102-120.	4.1	17
165	Modeling of forming limit for multilayer sheets based on strain-rate potentials. International Journal of Plasticity, 2015, 75, 63-99.	4.1	17
166	Performance review of various uncoupled fracture criteria for TRIP steel sheet. International Journal of Mechanical Sciences, 2021, 195, 106269.	3.6	17
167	Unconstrained springback behavior of Al–Mg–Si sheets for different sitting times. International Journal of Mechanical Sciences, 2008, 50, 1381-1389.	3.6	16
168	Finite Element Modeling of Plane Strain Toughness for 7085 Aluminum Alloy. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2009, 40, 354-364.	1.1	16
169	Themo-mechanical and microstructural modeling of friction stir welding of 6111-T4 aluminum alloys. Metals and Materials International, 2009, 15, 125-132.	1.8	16
170	A Novel Multi-objective Genetic Algorithms-Based Calculation of Hill's Coefficients. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2014, 45, 2704-2707.	1.1	16
171	Probing Formability Improvement of Ultra-thin Ferritic Stainless Steel Bipolar Plate of PEMFC in Non-conventional Forming Process. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2016, 47, 4160-4174.	1.1	16
172	Failure characteristics of advanced high strength steels at macro and micro scales. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2019, 754, 411-427.	2.6	16
173	Experimental and Numerical Analyses of Hot Stamped Parts with Tailored Properties. ISIJ International, 2013, 53, 1047-1056.	0.6	15
174	On precipitate induced hardening in crystal plasticity: algorithms and simulations. International Journal of Plasticity, 2004, 20, 1441-1461.	4.1	14
175	Application of central composite design for optimization of two-stage forming process using ultra-thin ferritic stainless steel. Metals and Materials International, 2016, 22, 276-287.	1.8	14
176	Twist springback characteristics of dual-phase steel sheet after non-axisymmetric deep drawing. International Journal of Material Forming, 2017, 10, 267-278.	0.9	14
177	On the fracture characteristics of advanced high strength steels during hydraulic bulge test. International Journal of Mechanical Sciences, 2021, 190, 106032.	3.6	14
178	Calibration of a strain path change model for a dual phase steel. International Journal of Mechanical Sciences, 2021, 194, 106217.	3.6	14
179	Finite element implementation of hydrostatic pressure-sensitive plasticity and its application to distortional hardening model and sheet metal forming simulations. Journal of Materials Processing Technology, 2022, 302, 117494.	3.1	14
180	Continuum physics of phase and defect microstructures: bridging the gap between physical metallurgy and plasticity of aluminum alloys. International Journal of Plasticity, 2004, 20, 363-402.	4.1	13

#	Article	IF	CITATIONS
181	A new model for FLD prediction based on advanced constitutive equations. International Journal of Material Forming, 2010, 3, 191-204.	0.9	13
182	Springback Reduction in Tailor Welded Blank with High Strength Differential by Using Multi-Objective Evolutionary and Genetic Algorithms. Steel Research International, 2015, 86, 1391-1402.	1.0	13
183	Examination and modeling of void growth kinetics in modern high strength dual phase steels during uniaxial tensile deformation. Materials Chemistry and Physics, 2016, 172, 54-61.	2.0	13
184	Constitutive modeling of ferritic stainless steel. International Journal of Material Forming, 2010, 3, 135-145.	0.9	12
185	Numerical procedures for predicting localization in sheet metals using crystal plasticity. Computational Materials Science, 2013, 72, 107-115.	1.4	12
186	A Springback Compensation Strategy and Applications to Bending Cases. Steel Research International, 2013, 84, 463-472.	1.0	12
187	Stress Relaxation for Formability Improvement. Key Engineering Materials, 0, 554-557, 145-150.	0.4	12
188	Formability of AHSS under an Attach–Detach Forming Mode. Steel Research International, 2015, 86, 98-109.	1.0	12
189	Thermal effects on the enhanced ductility in non-monotonic uniaxial tension of DP780 steel sheet. Metals and Materials International, 2016, 22, 968-973.	1.8	12
190	Forming limit and fracture mechanism of ferritic stainless steel sheets. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2011, 528, 3113-3121.	2.6	11
191	Mesoâ€5copic Analysis of Strain Path Change Effect on the Hardening Behavior of Dualâ€Phase Steel. Steel Research International, 2014, 85, 1047-1057.	1.0	11
192	Anisotropic Yield Conditions in Mathematical Theory of Plasticity. Journal of the Japan Society for Technology of Plasticity, 2016, 57, 230-243.	0.0	11
193	Characterizations of Aluminum Alloy Sheet Materials Numisheet 2005. AIP Conference Proceedings, 2005, , .	0.3	10
194	Design optimization of extruded preform for hydroforming processes based on ideal forming design theory. International Journal of Mechanical Sciences, 2006, 48, 1416-1428.	3.6	10
195	A pragmatic approach to accommodate in-plane anisotropy in forming limit diagrams. Mechanics Research Communications, 2014, 62, 5-17.	1.0	10
196	Influence of a Hydrostatic Pressure Shift on the Flow Stress in Sheet Metal. Procedia Manufacturing, 2020, 47, 1245-1249.	1.9	10
197	Inverse identification of large strain plasticity using the hydraulic bulge-test and full-field measurements. International Journal of Solids and Structures, 2022, 242, 111532.	1.3	10
198	Modelling macroscopic imperfections for the prediction of flow localization and fracture. Fatigue and Fracture of Engineering Materials and Structures, 2003, 26, 311-321.	1.7	9

#	Article	IF	CITATIONS
199	Unconditionally Convex Yield Functions for Sheet Metal Forming Based on Linear Stress Deviator Transformation. Key Engineering Materials, 2012, 504-506, 667-672.	0.4	9
200	About the influence of hydrostatic pressure on the yielding and flow of metallic polycrystals. Journal of the Mechanics and Physics of Solids, 2014, 67, 87-99.	2.3	9
201	Modeling of the mechanical behavior and texture evolution in Zn alloys during reverse shear loading. Journal of Materials Processing Technology, 2015, 224, 143-148.	3.1	9
202	Experimental Verification of the Tension-Compression Asymmetry of the Flow Stresses of a High Strength Steel Sheet. Procedia Engineering, 2017, 207, 1976-1981.	1.2	9
203	Calibration of Distortional Plasticity Framework and Application to U-draw Bending Simulations. ISIJ International, 2020, 60, 2927-2941.	0.6	9
204	Effect of hydrostatic stress on the strength differential effect in low-carbon steel sheet. International Journal of Material Forming, 2022, 15, 1.	0.9	9
205	Effects of texture gradients on yield loci and forming limit diagrams in various aluminum-lithium sheet alloys. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 1994, 25, 2783-2795.	1.1	8
206	Computer simulation of annealing and recovery effects on serrated flow in some Al-Mg alloys. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 1999, 30, 387-397.	1.1	8
207	Influence of Tempering Temperature on Low Cycle Fatigue of High Strength Steel. ISIJ International, 2014, 54, 979-984.	0.6	8
208	U-draw Bending of DP780 in Non-conventional Drawing Mode Using Direct-drive Digital Servo-press. Procedia Engineering, 2014, 81, 987-992.	1.2	8
209	New interpretation of cyclic Swift effects. European Journal of Mechanics, A/Solids, 2014, 44, 82-90.	2.1	8
210	Effect of slide motion on springback in 2-D draw bending for AHSS. International Journal of Material Forming, 2016, 9, 313-326.	0.9	8
211	Parameter identification of the homogeneous anisotropic hardening model using the virtual fields method. International Journal of Material Forming, 2016, 9, 691-696.	0.9	8
212	Identification of Dynamic Flow Stress Curves Using the Virtual Fields Methods: Theoretical Feasibility Analysis. Metals and Materials International, 2018, 24, 351-361.	1.8	8
213	A new concept for continuum distortional plasticity. International Journal of Plasticity, 2022, 155, 103303.	4.1	8
214	Plastic anisotropy in precipitation-strengthened aluminium alloys deformed in uniaxial and plane strain deformation. Modelling and Simulation in Materials Science and Engineering, 2000, 8, 435-443.	0.8	7
215	Effect of asymmetrical rolling and annealing the mechanical response of an 1050-o sheet. International Journal of Material Forming, 2009, 2, 891-894.	0.9	7
216	Gripless nanotension test for determination of nano-scale properties. International Journal of Plasticity, 2011, 27, 1527-1536.	4.1	7

#	Article	IF	CITATIONS
217	The formability of twinning—Induced plasticity steels predicted on the base of Marciniak-Kuczynski theory. Journal of Materials Processing Technology, 2021, 287, 116496.	3.1	7
218	Eckhaus instability – a possible wavelength changing mechanism in the evolution of dislocation patterns. Computational Materials Science, 2001, 21, 230-242.	1.4	6
219	Constitutive Descriptions For Metal Forming Simulations. AIP Conference Proceedings, 2007, , .	0.3	6
220	Analytical Approach to Predict Anisotropic Material Properties from Cup Drawings. International Journal of Material Forming, 2008, 1, 301-304.	0.9	6
221	Application of strain rate potentials with multiple linear transformations to the description of polycrystal plasticity. International Journal of Solids and Structures, 2009, 46, 1966-1974.	1.3	6
222	A Shear Fracture Criterion to Predict Limit Strains in Sheet Metal Forming. International Journal of Material Forming, 2010, 3, 235-238.	0.9	6
223	A Theoretical Study of the Effect of the Double Strain Path Change on the Forming Limits of Metal Sheet. Key Engineering Materials, 0, 554-557, 127-138.	0.4	6
224	Material Modelling and Springback Analysis for Multi-stage Rotary Draw Bending of Thin-walled Tube Using Homogeneous Anisotropic Hardening Model. Procedia Engineering, 2014, 81, 1228-1233.	1.2	6
225	Fracture assessment in dual phase and transformation-induced plasticity steels during 3-point bending. Theoretical and Applied Fracture Mechanics, 2020, 110, 102834.	2.1	6
226	On Precipitate-Induced Anisotropy Modeling in Binary Al-Cu Alloys. Materials Science Forum, 1996, 217-222, 635-640.	0.3	5
227	A simplified analysis of the effect of microstructure gradient on the stress relief of aluminum plates and extrusions. International Journal of Mechanical Sciences, 2003, 45, 1483-1503.	3.6	5
228	Constitutive modelling of ferritic stainless steel sheets. International Journal of Material Forming, 2009, 2, 391-394.	0.9	5
229	Study on plastic flow localization prediction using a physically-based hardening model. Computational Materials Science, 2011, 50, 2688-2697.	1.4	5
230	Evaluation of Anisotropic Yield Functions Characterized by Uniaxial and Biaxial Experiments for Formability of DP590 Sheet Steel. , 2011, , .		5
231	Forming Limit Curves and Forming Limit Stress Curves for Advanced High Strength Steels. Materials Science Forum, 0, 773-774, 109-114.	0.3	5
232	Extension of strain–life equation for low ycle fatigue of sheet metals using anisotropic yield criteria and distortional hardening model. Fatigue and Fracture of Engineering Materials and Structures, 2014, 37, 977-991.	1.7	5
233	Influence of Bainite Morphology on Ductile Fracture Behavior in a 0.4C rMoNi Steel. Steel Research International, 2015, 86, 528-535.	1.0	5
234	Advances in Constitutive Modeling of Plasticity for Forming Applications. Key Engineering Materials, 0, 725, 3-14.	0.4	5

#	Article	IF	CITATIONS
235	Yield and strain rate potentials for aluminum alloy sheet forming design. Metals and Materials International, 1998, 4, 931-938.	0.2	4
236	Strain-rate sensitivity limit diagrams and plastic instabilities in a 6xxx series aluminum alloy Part I: Analysis of temporal stress–strain serrations. Computational Materials Science, 2002, 24, 295-309.	1.4	4
237	Constitutive Modeling for Sheet Metal Forming. AIP Conference Proceedings, 2005, , .	0.3	4
238	A simple hardening rule accounting for time-dependent behavior in Al–Mg–Si alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2007, 456, 170-179.	2.6	4
239	Evaluation of Constitutive Models for Springback Prediction in U-drawâ^•bending of DP and TRIP Steel Sheets. , 2011, , .		4
240	Application of crystal plasticity to an austenitic stainless steel. Modelling and Simulation in Materials Science and Engineering, 2012, 20, 024009.	0.8	4
241	Design of high strength differential TWB to enhance drawability: FE study and optimization. International Journal of Precision Engineering and Manufacturing, 2014, 15, 2273-2283.	1.1	4
242	A Semiâ€Analytic Model to Predict and Compensate Springback in the 3 <scp>D</scp> Stretch Bending Process. Steel Research International, 2014, 85, 697-709.	1.0	4
243	Modeling the Effect of Asymmetric Rolling on Mechanical Properties of Al–Mg Alloys. Steel Research International, 2015, 86, 922-931.	1.0	4
244	Advanced constitutive modeling and application to industrial forming processes. MATEC Web of Conferences, 2016, 80, 15013.	0.1	4
245	Mechanical property of magnesium alloy sheet with hardening deterioration at warm temperatures and its application for failure analysis: Part I - property characterization. International Journal of Material Forming, 2016, 9, 277-285.	0.9	4
246	Effect of Rolling Parameters on Surface Strain Variation in Hot Strip Rolling. Steel Research International, 2017, 88, 1600492.	1.0	4
247	Failure of DP and TRIP steel sheets in different deformation modes. AIP Conference Proceedings, 2019, , ·	0.3	4
248	Transient Stress Relaxation Test to Identify Material Constants in Dislocation Density Model. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2022, 53, 1969-1990.	1.1	4
249	The influence of aluminium alloy anisotropic texture on crack-tip plasticity. Fatigue and Fracture of Engineering Materials and Structures, 2004, 27, 1157-1169.	1.7	3
250	Finite Element analysis of aluminum tube hydroforming based on non-quadratic yield function. International Journal of Manufacturing Technology and Management, 2008, 14, 84.	0.1	3
251	A novel approach for modeling of anisotropic hardening and non proportional loading paths, application to finite element analysis of deep drawing. International Journal of Material Forming, 2009, 2, 367-370.	0.9	3
252	Relationship between Material Properties and Local Formability of DP980 Steels. , 2012, , .		3

252 Relationship between Material Properties and Local Formability of DP980 Steels., 2012,,.

#	Article	IF	CITATIONS
253	Bending Formability of Ferritic Stainless Steels for Application to Tubular Exhaust Manifolds. ISIJ International, 2015, 55, 1048-1057.	0.6	3
254	Measurement and Analysis of the Elastic-Plastic Deformation Behavior of an Ultra-thin Austenitic Stainless Steel Sheet Subjected to In-plane Reverse Loading. Procedia Engineering, 2017, 207, 1964-1969.	1.2	3
255	Advanced Constitutive Modeling for Application to Sheet Forming. Journal of Physics: Conference Series, 2018, 1063, 012002.	0.3	3
256	Strain path changes in aluminum. AIP Conference Proceedings, 2019, , .	0.3	3
257	Characterization of dynamic hardening behavior at intermediate strain rates using the virtual fields method. Mechanics of Materials, 2021, 162, 104101.	1.7	3
258	Stability of initial texture components during deep drawing of FCC polycrystals. Metals and Materials International, 1998, 4, 489-497.	0.2	3
259	Modeling of plastic anisotropy with reduced polycrystalline models. Application to aluminum alloys. International Journal of Material Forming, 2008, 1, 269-272.	0.9	2
260	Application of Homogeneous Potentials for the Modeling of the Bauschinger Effects in Ultra Low Carbon Steel. , 2011, , .		2
261	Plastic Instability in Complex Strain Paths Predicted by Advanced Constitutive Equations. , 2011, , .		2
262	Determination of the Forming Limit Diagram of an Ultra-Thin Ferritic Stainless Steel Sheet. AIP Conference Proceedings, 2011, , .	0.3	2
263	Enhancement in the Modeling of Temperature and Strain Rateâ€Dependent Plastic Hardening Behavior of a Sheet Metal. Steel Research International, 2015, 86, 902-914.	1.0	2
264	Prediction of plastic flow localization with shell element in thick AHSS sheets. Procedia Manufacturing, 2018, 15, 861-868.	1.9	2
265	Multi-Coefficient Optimization of Homogeneous Anisotropic Hardening Model for Ahss. IOP Conference Series: Materials Science and Engineering, 2019, 651, 012018.	0.3	2
266	Analytical Approach to Failure Determination of Advanced Highâ€Strength Steel in Stretchâ€Bending Mode. Steel Research International, 2021, 92, .	1.0	2
267	Predictions of polycrystalline yield surfaces for fcc metals using a new viscoplastic intermediate approach. International Journal of Material Forming, 2009, 2, 399-402.	0.9	1
268	Sheet Forming Simulations of Automotive Parts using Different Yield Functions. , 2010, , .		1
269	Sheet Metal Forming Limit Predictions Based on Advanced Constitutive Equations. International Journal of Material Forming, 2010, 3, 179-182.	0.9	1
270	Advanced Steel Design by Multi-Scale Modeling. Materials Science Forum, 2010, 654-656, 41-46.	0.3	1

#	Article	IF	CITATIONS
271	Crystal Plasticity Predictions of Forward-Reverse Simple Shear Flow Stress. Materials Science Forum, 0, 702-703, 204-207.	0.3	1
272	Transient Negative Strain Hardening during Severe Plastic Deformation of Al-30wt%Zn Alloys. Key Engineering Materials, 0, 554-557, 3-11.	0.4	1
273	A microstructure-based model for describing strain softening during compression of Al-30%wt Zn alloy. International Journal of Multiphysics, 2013, 7, 77-86.	0.3	1
274	Numerical Simulation of the Mechanical Response During Strain Path Change: Application to Zn Alloys. Procedia Engineering, 2014, 81, 1300-1305.	1.2	1
275	Modeling of the Mechanical Response During Reversal Shear Loading: Application to Steels. Steel Research International, 2016, 87, 850-858.	1.0	1
276	Effect of the determination method of the material parameters on the accuracy of forming limit analyses for 5000 series aluminum alloy. AIP Conference Proceedings, 2016, , .	0.3	1
277	Advanced constitutive modeling of AHSS sheets forapplication to springback prediction after U-draw double stamping process. Journal of Physics: Conference Series, 2016, 734, 032029.	0.3	1
278	Identification of the YLD2000-2D Model with the Virtual Fields Method. Conference Proceedings of the Society for Experimental Mechanics, 2016, , 51-57.	0.3	1
279	Characterization of dynamic hardening behavior using acceleration information. Procedia Engineering, 2017, 207, 245-250.	1.2	1
280	Anisotropic Plasticity and Application to Plane Stress. , 2018, , 1-22.		1
281	Comment on "Prediction of strain distribution and four, six, or eight ears depending on single-crystal orientation using a new single crystal criterion― International Journal of Material Forming, 2020, 13, 853-854.	0.9	1
282	Material Modeling in High Strain Range and Forming Limit Analysis for 6000 Series Aluminum Alloy Sheet. Procedia Manufacturing, 2020, 47, 1270-1273.	1.9	1
283	Evaluation of Anisotropic Hardening Models using Two-Step Tension Tests. Transactions of Materials Processing, 2012, 21, 372-377.	0.1	1
284	Constitutive Description of Isotropic and Anisotropic Plasticity for Metals. CISM International Centre for Mechanical Sciences, Courses and Lectures, 2015, , 67-118.	0.3	1
285	Forming Analysis and Design for Hydroforming. , 2005, , 763-775.		0
286	Convolute Cut-Edge Design with a New Anisotropic Yield Function for Earless Target Cup in a Circular Cup Drawing. Materials Science Forum, 2006, 505-507, 1297-1302.	0.3	0
287	Anisotropic strain-rate potential based on multiple linear transformations. International Journal of Material Forming, 2009, 2, 479-482.	0.9	0
288	Remarks upon the algebraic structure of some recently proposed anisotropic yield functions. International Journal of Material Forming, 2010, 3, 239-242.	0.9	0

#	Article	IF	CITATIONS
289	Microstructural and Crystallographic Aspects of Yield Surface Evolution. Materials Science Forum, 0, 702-703, 224-228.	0.3	0
290	Simulation of Thermal Distortion in Hot Press Forming with Dissimilar Material TWB. Advanced Materials Research, 2014, 1063, 330-333.	0.3	0
291	Prediction of Ridging by 3-Dimensional Texture in Ferritic Stainless Steels. Key Engineering Materials, 2014, 622-623, 72-76.	0.4	0
292	Influence of Contact Friction on the Experimental Determination of the Balanced Biaxial Strain-Ratio Using the Disc Compression Test. Key Engineering Materials, 2014, 611-612, 529-535.	0.4	0
293	In honor of Kwansoo Chung. International Journal of Plasticity, 2014, 58, 1-2.	4.1	0
294	Effect of Stress State and Temperature on the Kinetics of Martensitic Phase Transformation in TRIP-Assisted Steel. Key Engineering Materials, 2015, 651-653, 27-31.	0.4	0
295	Anisotropic Yield Functions. , 2015, , 43-48.		0
296	Validation of homogeneous anisotropic hardening approach based on crystal plasticity. AIP Conference Proceedings, 2016, , .	0.3	0
297	Prediction of part shape and associated material properties in hot-press forming using Unite element analysis. Journal of Physics: Conference Series, 2016, 734, 032024.	0.3	0
298	Modeling of yield surface evolution in uniaxial and biaxial loading conditions using a prestrained large scale specimen. AIP Conference Proceedings, 2018, , .	0.3	0
299	The formability prediction of twinning–induced plasticity steels. AIP Conference Proceedings, 2019, , .	0.3	0
300	Dynamic hardening properties identification utilizing acceleration data by the Virtual Fields Method. IOP Conference Series: Materials Science and Engineering, 2020, 967, 012053.	0.3	0
301	Reverse-loading coefficients identification for updated homogeneous anisotropic hardening model. IOP Conference Series: Materials Science and Engineering, 2020, 967, 012014.	0.3	0
302	Non-Quadratic Anisotropic Strain Rate Potential Defined in Plane Stress State. Transactions of Materials Processing, 2011, 20, 369-376.	0.1	0
303	Prediction of Nonlinear Kinematic Hardening Parameters for DP Steels by Crystal Plasticity-Based Micromechanical Analysis. Advanced Science Letters, 2012, 13, 224-227.	0.2	0
304	Parameter Determination of Anisotropic Yield Criterion. Conference Proceedings of the Society for Experimental Mechanics, 2014, , 253-257.	0.3	0
305	Anisotropic Plasticity and Application to Plane Stress. , 2020, , 79-99.		0