Jacques Mahillon

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4532321/publications.pdf Version: 2024-02-01

	126858	88593
5,637	33	70
citations	h-index	g-index
123	123	5927
docs citations	times ranked	citing authors
	citations 123	5,637 33 citations h-index 123 123

#	Article	IF	CITATIONS
1	Insertion Sequences. Microbiology and Molecular Biology Reviews, 1998, 62, 725-774.	2.9	1,256
2	Overview of the Antimicrobial Compounds Produced by Members of the Bacillus subtilis Group. Frontiers in Microbiology, 2019, 10, 302.	1.5	425
3	Fatal Family Outbreak of Bacillus cereus -Associated Food Poisoning. Journal of Clinical Microbiology, 2005, 43, 4277-4279.	1.8	392
4	Inulin-type fructans modulate intestinal Bifidobacterium species populations and decrease fecal short-chain fatty acids in obese women. Clinical Nutrition, 2015, 34, 501-507.	2.3	220
5	Sudden Death of a Young Adult Associated with Bacillus cereus Food Poisoning. Journal of Clinical Microbiology, 2011, 49, 4379-4381.	1.8	183
6	An integrative review of granular sludge for the biological removal of nutrients and recalcitrant organic matter from wastewater. Chemical Engineering Journal, 2018, 336, 489-502.	6.6	178
7	Genetic Diversity of Bacillus cereus / B. thuringiensis Isolates from Natural Sources. Current Microbiology, 1998, 37, 80-87.	1.0	118
8	Versatile Antagonistic Activities of Soil-Borne Bacillus spp. and Pseudomonas spp. against Phytophthora infestans and Other Potato Pathogens. Frontiers in Microbiology, 2018, 9, 143.	1.5	114
9	Non Digestible Oligosaccharides Modulate the Gut Microbiota to Control the Development of Leukemia and Associated Cachexia in Mice. PLoS ONE, 2015, 10, e0131009.	1.1	109
10	Family portrait of <i>Bacillus cereus</i> and <i>Bacillus weihenstephanensis</i> cereulideâ€producing strains. Environmental Microbiology Reports, 2009, 1, 177-183.	1.0	93
11	Phages Preying on Bacillus anthracis, Bacillus cereus, and Bacillus thuringiensis: Past, Present and Future. Viruses, 2014, 6, 2623-2672.	1.5	89
12	The cereulide genetic determinants of emetic Bacillus cereus are plasmid-borne. Microbiology (United) Tj ETQqO	0	Ovgrlock 10 1
13	Conjugative plasmid pAW63 brings new insights into the genesis of the Bacillus anthracis virulence plasmid pXO2 and of the Bacillus thuringiensis plasmid pBT9727. BMC Genomics, 2005, 6, 103.	1.2	85
14	pGIL01, a linear tectiviral plasmid prophage originating from Bacillus thuringiensis serovar israelensis. Microbiology (United Kingdom), 2003, 149, 2083-2092.	0.7	72
15	Distribution, Diversity, and Potential Mobility of Extrachromosomal Elements Related to the <i>Bacillus anthracis</i> pXO1 and pXO2 Virulence Plasmids. Applied and Environmental Microbiology, 2009, 75, 3016-3028.	1.4	67
16	Evaluation of viability-qPCR detection system on viable and dead Salmonella serovar Enteritidis. Journal of Microbiological Methods, 2014, 103, 131-137.	0.7	65

17	GIL16, a New Gram-Positive Tectiviral Phage Related to the Bacillus thuringiensis GIL01 and the Bacillus cereus pBClin15 Elements. Journal of Bacteriology, 2005, 187, 1966-1973.	1.0	59

18Synergistic Removal of Static and Dynamic Staphylococcus aureus Biofilms by Combined Treatment
with a Bacteriophage Endolysin and a Polysaccharide Depolymerase. Viruses, 2018, 10, 438.1.559

#	Article	IF	CITATIONS
19	IS4 family goes genomic. BMC Evolutionary Biology, 2008, 8, 18.	3.2	58
20	Diversity and differential distribution of IS231, IS232 and IS240 among Bacillus cereus, Bacillus thuringiensis and Bacillus mycoides. Microbiology (United Kingdom), 1997, 143, 2537-2547.	0.7	57
21	Cloning and nucleotide sequence of different iso-IS231 elements and their structural association with the Tn4430 transposon in Bacillus thuringiensis. Gene, 1987, 51, 187-196.	1.0	56
22	Improving phosphorus removal in aerobic granular sludge processes through selective microbial management. Bioresource Technology, 2016, 211, 298-306.	4.8	56
23	The patchwork nature of rolling-circle plasmids: comparison of six plasmids from two distinct Bacillus thuringiensis serotypes. Plasmid, 2003, 49, 205-232.	0.4	51
24	Prevalence and Levels of <i>Bacillus cereus</i> Emetic Toxin in Rice Dishes Randomly Collected from Restaurants and Comparison with the Levels Measured in a Recent Foodborne Outbreak. Foodborne Pathogens and Disease, 2012, 9, 809-814.	0.8	51
25	Hemolytic and Nonhemolytic Enterotoxin Genes are Broadly Distributed among Bacillus thuringiensis Isolated from Wild Mammals. Microbial Ecology, 2006, 52, 544-551.	1.4	49
26	Exploring the diversity of extremely halophilic archaea in food-grade salts. International Journal of Food Microbiology, 2014, 191, 36-44.	2.1	45
27	Contained use of Bacteriophages: Risk Assessment and Biosafety Recommendations. Applied Biosafety, 2010, 15, 32-44.	0.2	41
28	Circuitry Rewiring Directly Couples Competence to Predation in the Gut Dweller Streptococcus salivarius. Cell Reports, 2018, 22, 1627-1638.	2.9	40
29	Diversity of Bacillus cereus sensu lato mobilome. BMC Genomics, 2019, 20, 436.	1.2	40
30	Filamentous bulking caused by Thiothrix species is efficiently controlled in full-scale wastewater treatment plants by implementing a sludge densification strategy. Scientific Reports, 2017, 7, 1430.	1.6	39
31	Insertion sequence elements in Cupriavidus metallidurans CH34: Distribution and role in adaptation. Plasmid, 2011, 65, 193-203.	0.4	36
32	Sympatric soil communities of <i>Bacillus cereus sensu lato</i> : population structure and potential plasmid dynamics of pXO1- and pXO2-like elements. FEMS Microbiology Ecology, 2009, 70, 344-355.	1.3	34
33	Nanoscale imaging of Bacillus thuringiensis flagella using atomic force microscopy. Nanoscale, 2012, 4, 1585-1591.	2.8	34
34	The genetic diversity of cereulide biosynthesis gene cluster indicates a composite transposon Tnces in emetic Bacillus weihenstephanensis. BMC Microbiology, 2014, 14, 149.	1.3	33
35	Role of plasmid plasticity and mobile genetic elements in the entomopathogen Bacillus thuringiensis serovar israelensis. FEMS Microbiology Reviews, 2018, 42, 829-856.	3.9	33
36	Presence of Antibiotic Residues and Antibiotic Resistant Bacteria in Cattle Manure Intended for Fertilization of Agricultural Fields: A One Health Perspective. Antibiotics, 2021, 10, 410.	1.5	33

#	Article	lF	CITATIONS
37	ls Cytotoxin K from Bacillus cereus a bona fide enterotoxin?. International Journal of Food Microbiology, 2015, 211, 79-85.	2.1	32
38	The CRISPR-Cas systems were selectively inactivated during evolution of <i>Bacillus cereus</i> group for adaptation to diverse environments. ISME Journal, 2020, 14, 1479-1493.	4.4	32
39	Follow-up of the Bacillus cereus emetic toxin production in penne pasta under household conditions using liquid chromatography coupled with mass spectrometry. Food Microbiology, 2011, 28, 1105-1109.	2.1	31
40	<i>Staphylococcus epidermidis</i> Affinity for Fibrinogen-Coated Surfaces Correlates with the Abundance of the SdrG Adhesin on the Cell Surface. Langmuir, 2015, 31, 4713-4721.	1.6	31
41	MIC231, a naturally occurring mobile insertion cassette from Bacillus cereus. Molecular Microbiology, 1999, 32, 657-668.	1.2	30
42	Phage-Borne Factors and Host LexA Regulate the Lytic Switch in Phage GIL01. Journal of Bacteriology, 2011, 193, 6008-6019.	1.0	30
43	Cereulide production by Bacillus weihenstephanensis strains during growth at different pH values and temperatures. Food Microbiology, 2017, 65, 130-135.	2.1	30
44	Plasmid Capture by the <i>Bacillus thuringiensis</i> Conjugative Plasmid pXO16. Journal of Bacteriology, 2009, 191, 2197-2205.	1.0	29
45	Influence of feeding pattern and hydraulic selection pressure to control filamentous bulking in biological treatment of dairy wastewaters. Bioresource Technology, 2016, 221, 300-309.	4.8	29
46	Influence of Lysogeny of Tectiviruses GIL01 and GIL16 on Bacillus thuringiensis Growth, Biofilm Formation, and Swarming Motility. Applied and Environmental Microbiology, 2014, 80, 7620-7630.	1.4	28
47	Prevalence, Genetic Diversity, and Host Range of Tectiviruses among Members of the Bacillus cereus Group. Applied and Environmental Microbiology, 2014, 80, 4138-4152.	1.4	28
48	Comparative genomics of extrachromosomal elements in Bacillus thuringiensis subsp. israelensis. Research in Microbiology, 2017, 168, 331-344.	1.0	28
49	Bacilysin within the Bacillus subtilis group: gene prevalence versus antagonistic activity against Gram-negative foodborne pathogens. Journal of Biotechnology, 2021, 327, 28-35.	1.9	28
50	Binding of <i>Staphylococcus aureus</i> Protein A to von Willebrand Factor Is Regulated by Mechanical Force. MBio, 2019, 10, .	1.8	26
51	Characterization of a novel temperate phage originating from a cereulide-producing Bacillus cereus strain. Research in Microbiology, 2011, 162, 446-459.	1.0	25
52	Whole-Genome Sequences of 94 Environmental Isolates of Bacillus cereus <i>Sensu Lato</i> . Genome Announcements, 2013, 1, .	0.8	25
53	Identification of five novel tectiviruses in Bacillus strains: analysis ofÂa highly variable region generating genetic diversity. Research in Microbiology, 2013, 164, 118-126.	1.0	24
54	Development and validation of a real-time quantitative PCR assay for rapid identification of Bacillus anthracis in environmental samples. Applied Microbiology and Biotechnology, 2010, 88, 1179-1192.	1.7	23

#	Article	IF	CITATIONS
55	Insight about methods used for polycyclic aromatic hydrocarbons reduction in smoked or grilled fishery and meat products for future re-engineering: A systematic review. Food and Chemical Toxicology, 2020, 141, 111372.	1.8	23
56	The Bacillus thuringiensis phage GIL01 encodes two enzymes with peptidoglycan hydrolase activity. FEMS Microbiology Letters, 2004, 237, 289-295.	0.7	22
57	Diversity of thermal ecotypes and potential pathotypes of <i>Bacillus thuringiensis</i> soil isolates. FEMS Microbiology Ecology, 2013, 85, 262-272.	1.3	21
58	Etmopterus spinax, the velvet belly lanternshark, does not use bacterial luminescence. Acta Histochemica, 2019, 121, 516-521.	0.9	21
59	The phage GIL01 encodes two enzymes with peptidoglycan hydrolase activity. FEMS Microbiology Letters, 2004, 237, 289-295.	0.7	20
60	Diversity of pulsed-field gel electrophoresis patterns of cereulide-producing isolates ofBacillus cereusandBacillus weihenstephanensis. FEMS Microbiology Letters, 2014, 353, 124-131.	0.7	20
61	Extensive Genetic Variability Linked to IS <i>26</i> Insertions in the <i>fljB</i> Promoter Region of Atypical Monophasic Variants of Salmonella enterica Serovar Typhimurium. Applied and Environmental Microbiology, 2015, 81, 3169-3175.	1.4	20
62	Metabolic capacities and toxigenic potential as key drivers of Bacillus cereus ubiquity and adaptation. Annals of Microbiology, 2015, 65, 975-983.	1.1	20
63	Antifungal Activity Displayed by Cereulide, the Emetic Toxin Produced by <i>Bacillus cereus</i> . Applied and Environmental Microbiology, 2011, 77, 2555-2558.	1.4	19
64	Detection of the cryptic prophage-like molecule pBtic235 in Bacillus thuringiensis subsp. israelensis. Research in Microbiology, 2017, 168, 319-330.	1.0	19
65	Determination of Bacillus cereus Emetic Toxin in Food Products by Means of LC–MS². Food Analytical Methods, 2012, 5, 969-979.	1.3	18
66	Tomato Twisted Leaf Virus: A Novel Indigenous New World Monopartite Begomovirus Infecting Tomato in Venezuela. Viruses, 2019, 11, 327.	1.5	18
67	Contamination of smoked fish and smoked-dried fish with polycyclic aromatic hydrocarbons and biogenic amines and risk assessment for the Beninese consumers. Food Control, 2021, 126, 108089.	2.8	18
68	Chemical hazards in smoked meat and fish. Food Science and Nutrition, 2021, 9, 6903-6922.	1.5	18
69	Transcriptional analysis of the conjugative plasmid pAW63 from Bacillus thuringiensis. Plasmid, 2008, 60, 190-199.	0.4	17
70	Atomic force microscopy: A powerful tool for studying bacterial swarming motility. Micron, 2012, 43, 1304-1311.	1.1	16
71	Genetic Environment of cry1 Genes Indicates Their Common Origin. Genome Biology and Evolution, 2017, 9, 2265-2275.	1.1	16
72	Prevalence and Diversity of the Thermotolerant Bacterium Bacillus cytotoxicus among Dried Food Products. Journal of Food Protection, 2019, 82, 1210-1216.	0.8	16

#	Article	IF	CITATIONS
73	pXO16 from Bacillus thuringiensis serovar israelensis: Almost 350 kb of terra incognita. Plasmid, 2015, 80, 8-15.	0.4	15
74	A novel T4SSâ€mediated DNA transfer used by pXO16, a conjugative plasmid from <i>Bacillus thuringiensis</i> serovar <i>israelensis</i> . Environmental Microbiology, 2018, 20, 1550-1561.	1.8	15
75	Processing methods, preservation practices and quality attributes of smoked and smoked-dried fishes consumed in Benin. Cogent Food and Agriculture, 2019, 5, 1641255.	0.6	15
76	Screening of Cytotoxic B. cereus on Differentiated Caco-2 Cells and in Co-Culture with Mucus-Secreting (HT29-MTX) Cells. Toxins, 2016, 8, 320.	1.5	14
77	Microbiological characteristics of smoked and smoked–dried fish processed in Benin. Food Science and Nutrition, 2019, 7, 1821-1827.	1.5	14
78	At the Gate of Mutualism: Identification of Genomic Traits Predisposing to Insect-Bacterial Symbiosis in Pathogenic Strains of the Aphid Symbiont Serratia symbiotica. Frontiers in Cellular and Infection Microbiology, 2021, 11, 660007.	1.8	14
79	Performances of the barrel kiln used in cottage industry for fish processing and effects on physicochemical characteristics and safety of smoked fish products. Journal of the Science of Food and Agriculture, 2022, 102, 851-861.	1.7	14
80	pXO16, the large conjugative plasmid from Bacillus thuringiensis serovar israelensis displays an extended host spectrum. Plasmid, 2019, 102, 46-50.	0.4	13
81	Polycyclic aromatic hydrocarbons contamination of traditionally grilled pork marketed in South Benin and health risk assessment for the Beninese consumer. Food Additives and Contaminants - Part A Chemistry, Analysis, Control, Exposure and Risk Assessment, 2020, 37, 742-752.	1.1	13
82	Horizontal transfer of chromosomal markers mediated by the large conjugative plasmid pXO16 from Bacillus thuringiensis serovar israelensis. Plasmid, 2017, 91, 76-81.	0.4	12
83	Characterization of PlyB221 and PlyP32, Two Novel Endolysins Encoded by Phages Preying on the Bacillus cereus Group. Viruses, 2020, 12, 1052.	1.5	12
84	Role of Ionic Strength in Staphylococcal Cell Aggregation. Langmuir, 2016, 32, 7277-7283.	1.6	11
85	Bacterial Sexuality at the Nanoscale. Nano Letters, 2018, 18, 5821-5826.	4.5	11
86	Electroporation of Bacillus thuringiensis and Bacillus cereus. , 2000, , 242-252.		9
87	Characterization and Whole Genome Sequencing of AR23, a Highly Toxic Bacillus thuringiensis Strain Isolated from Lebanese Soil. Current Microbiology, 2019, 76, 1503-1511.	1.0	9
88	Insertion Sequence Elements and Transposons inBacillus. , 0, , 236-253.		7
89	Complete Genome Sequence of Bacillus velezensis CN026 Exhibiting Antagonistic Activity against Gram-Negative Foodborne Pathogens. Genome Announcements, 2018, 6, .	0.8	7
90	A liquid bead array for the identification and characterization of fljB -positive and fljB -negative monophasic variants of Salmonella Typhimurium. Food Microbiology, 2018, 71, 17-24.	2.1	7

#	Article	IF	CITATIONS
91	Biocontrol potential of phage Deep-Blue against psychrotolerant Bacillus weihenstephanensis. Food Control, 2019, 102, 94-103.	2.8	7
92	The CovRS Environmental Sensor Directly Controls the ComRS Signaling System To Orchestrate Competence Bimodality in Salivarius Streptococci. MBio, 2022, 13, e0312521.	1.8	7
93	Fast and discriminative CoSYPS detection system of viable Salmonella spp. and Listeria spp. in carcass swab samples. International Journal of Food Microbiology, 2015, 192, 103-110.	2.1	6
94	Complete genome sequence of bacteriophage Deep-Purple, a novel member of the family Siphoviridae infecting Bacillus cereus. Archives of Virology, 2018, 163, 2555-2559.	0.9	6
95	Consumption and physicoâ€chemical characteristics of smoked and smokedâ€dried fish commonly produced in South Benin and contribution to recommended nutrient intakes. Food Science and Nutrition, 2020, 8, 4822-4830.	1.5	6
96	Porous Silicon Biosensor for the Detection of Bacteria through Their Lysate. Biosensors, 2021, 11, 27.	2.3	6
97	Electrical Characterization of Cellulose-Based Membranes towards Pathogen Detection in Water. Biosensors, 2021, 11, 57.	2.3	6
98	The megamouth shark, Megachasma pelagios, is not a luminous species. PLoS ONE, 2020, 15, e0242196.	1.1	6
99	New Insights into the Potential Cytotoxic Role of Bacillus cytotoxicus Cytotoxin K-1. Toxins, 2021, 13, 698.	1.5	6
100	An improved method for rapid generation and screening of Bacillus thuringiensis phage-resistant mutants. Journal of Microbiological Methods, 2014, 106, 101-103.	0.7	5
101	Diversity and enzymatic potentialities of Bacillus sp. strains isolated from a polluted freshwater ecosystem in Cuba. World Journal of Microbiology and Biotechnology, 2018, 34, 28.	1.7	5
102	Complete genome sequence of two tomato-infecting begomoviruses in Venezuela: evidence of a putative novel species and a novel recombinant strain. Archives of Virology, 2018, 163, 555-558.	0.9	5
103	Bacillus cytotoxicus Genomics: Chromosomal Diversity and Plasmidome Versatility. Frontiers in Microbiology, 2021, 12, 789929.	1.5	5
104	pGIAK1, a Heavy Metal Resistant Plasmid from an Obligate Alkaliphilic and Halotolerant Bacterium Isolated from the Antarctic Concordia Station Confined Environment. PLoS ONE, 2013, 8, e72461.	1.1	4
105	Oneâ€day pulsedâ€field gel electrophoresis protocol for rapid determination of emetic <i>Bacillus cereus</i> isolates. Electrophoresis, 2015, 36, 1051-1054.	1.3	4
106	Complete Genome Sequence of Bacteriophage Deep-Blue Infecting Emetic Bacillus cereus. Genome Announcements, 2016, 4, .	0.8	4
107	IS982 and kin: new insights into an old IS family. Mobile DNA, 2020, 11, 24.	1.3	4
108	Pan-Genome Portrait of Bacillus mycoides Provides Insights into the Species Ecology and Evolution. Microbiology Spectrum, 2021, 9, e0031121.	1.2	4

#	Article	IF	CITATIONS
109	Cyclical Patterns Affect Microbial Dynamics in the Water Basin of a Nuclear Research Reactor. Frontiers in Microbiology, 2021, 12, 744115.	1.5	4
110	Getting Outside the Cell: Versatile Holin Strategies Used by Distinct Phages to Leave Their Bacillus thuringiensis Host. Journal of Virology, 2022, 96, .	1.5	4
111	Thermal and technological performances of traditional grills used in cottage industry and effects on physicochemical characteristics of grilled pork. Journal of Food Processing and Preservation, 2020, 44, e14562.	0.9	3
112	A Novel Antidipteran Bacillus thuringiensis Strain: Unusual Cry Toxin Genes in a Highly Dynamic Plasmid Environment. Applied and Environmental Microbiology, 2021, 87, .	1.4	3
113	TipB, a novel cell wall hydrolase, is required for efficient conjugative transfer of pXO16 from Bacillus thuringiensis sv. israelensis. Research in Microbiology, 2021, 172, 103866.	1.0	2
114	Molecular and biological characterization of a new Tomato mild yellow leaf curl Aragua virus strain producing severe symptoms in tomato. Virus Genes, 2017, 53, 939-942.	0.7	1
115	Assessment of the physicochemical characteristics, chemical and microbiological safety of two types of <i>kilichi</i> , a grilled meat produced in Niger. Food Science and Nutrition, 2019, 7, 3293-3301.	1.5	1
116	Comparative Genomics of Prophages Sato and Sole Expands the Genetic Diversity Found in the Genus Betatectivirus. Microorganisms, 2021, 9, 1335.	1.6	1
117	Bacterial diversity of smoked and smokedâ€dried fish from West Africa: A metagenomic approach. Journal of Food Processing and Preservation, 2021, 45, e15919.	0.9	1
118	Viral Proteins Involved in the Adsorption Process of Deep-Purple, a Siphovirus Infecting Members of the Bacillus cereus Group. Applied and Environmental Microbiology, 2022, , e0247821.	1.4	1
119	Conjugation-mediated transfer of pXO16, a large plasmid from Bacillus thuringiensis sv. israelensis, across the Bacillus cereus group and its impact on host phenotype. Plasmid, 2022, 122, 102639.	0.4	1
120	Enumeration of lactic acid bacteria: lacuna and improvement areas highlighted by proficiency testing. Accreditation and Quality Assurance, 2019, 24, 381-385.	0.4	0
121	Stable Porous Silicon Membranes for Fast Bacterial Detection. Engineering Proceedings, 2021, 4, 45.	0.4	0
122	Electrochemical Characterization of Nitrocellulose Membranes towards Bacterial Detection in Water. , 2020, 60, .		0
123	Bacterial diversity of two types of Wagashi, a traditional Beninese cheese, using High-Throughput Amplicon Sequencing. Access Microbiology, 2022, 4, .	0.2	0