Daniele Di Nuzzo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4532223/publications.pdf Version: 2024-02-01

DANIELE DI NUZZO

#	Article	IF	CITATIONS
1	Electrically Induced Mixed Valence Increases the Conductivity of Copper Helical Metallopolymers. Advanced Materials, 2021, 33, e2100403.	21.0	14
2	Graphene-passivated nickel as an efficient hole-injecting electrode for large area organic semiconductor devices. Applied Physics Letters, 2020, 116, .	3.3	3
3	Circularly Polarized Photoluminescence from Chiral Perovskite Thin Films at Room Temperature. ACS Nano, 2020, 14, 7610-7616.	14.6	86
4	(Perylene)3-(TCNQF1)2: Yet Another Member in the Series of Perylene–TCNQFx Polymorphic Charge Transfer Crystals. Crystals, 2020, 10, 177.	2.2	4
5	A general approach for hysteresis-free, operationally stable metal halide perovskite field-effect transistors. Science Advances, 2020, 6, eaaz4948.	10.3	129
6	Molecular Design Principles for Achieving Strong Chiroptical Properties of Fluorene Copolymers in Thin Films. Chemistry of Materials, 2019, 31, 6633-6641.	6.7	52
7	Growth of Nanosized Single Crystals for Efficient Perovskite Light-Emitting Diodes. ACS Nano, 2018, 12, 3417-3423.	14.6	109
8	Solvatochromic covalent organic frameworks. Nature Communications, 2018, 9, 3802.	12.8	171
9	Conjugated Polyelectrolytes as Efficient Hole Transport Layers in Perovskite Light-Emitting Diodes. ACS Nano, 2018, 12, 5826-5833.	14.6	56
10	Unraveling Mechanisms of Chiral Induction in Double-Helical Metallopolymers. Journal of the American Chemical Society, 2018, 140, 10344-10353.	13.7	59
11	Amine-Based Passivating Materials for Enhanced Optical Properties and Performance of Organic–Inorganic Perovskites in Light-Emitting Diodes. Journal of Physical Chemistry Letters, 2017, 8, 1784-1792.	4.6	220
12	Effect of the solvent used for fabrication of perovskite films by solvent dropping on performance of perovskite light-emitting diodes. Nanoscale, 2017, 9, 2088-2094.	5.6	61
13	High Circular Polarization of Electroluminescence Achieved <i>via</i> Self-Assembly of a Light-Emitting Chiral Conjugated Polymer into Multidomain Cholesteric Films. ACS Nano, 2017, 11, 12713-12722.	14.6	197
14	Pitch and Handedness of the Cholesteric Order in Films of a Chiral Alternating Fluorene Copolymer. Journal of Physical Chemistry B, 2017, 121, 11520-11527.	2.6	26
15	Ultrafast Charge and Triplet State Formation in Diketopyrrolopyrrole Low Band Gap Polymer/Fullerene Blends: Influence of Nanoscale Morphology of Organic Photovoltaic Materials on Charge Recombination to the Triplet State. Journal of Spectroscopy, 2017, 2017, 1-16.	1.3	24
16	Improving the Stability and Performance of Perovskite Lightâ€Emitting Diodes by Thermal Annealing Treatment. Advanced Materials, 2016, 28, 6906-6913.	21.0	111
17	Structure, Stoichiometry, and Charge Transfer in Cocrystals of Perylene with TCNQ-F _{<i>x</i>} . Crystal Growth and Design, 2016, 16, 3028-3036.	3.0	99
18	Improved performance of perovskite light-emitting diodes using a PEDOT:PSS and MoO ₃ composite layer. Journal of Materials Chemistry C, 2016, 4, 8161-8165.	5.5	75

DANIELE DI NUZZO

#	Article	IF	CITATIONS
19	How intermolecular geometrical disorder affects the molecular doping of donor–acceptor copolymers. Nature Communications, 2015, 6, 6460.	12.8	104
20	Enhanced Photogeneration of Polaron Pairs in Neat Semicrystalline Donor–Acceptor Copolymer Films via Direct Excitation of Interchain Aggregates. Journal of Physical Chemistry Letters, 2015, 6, 1196-1203.	4.6	24
21	Near infrared ultrafast pump-probe spectroscopy with ZrF4-BaF2-LaF3-AlF3-NaF fiber supercontinuum. Applied Physics Letters, 2015, 107, 021103.	3.3	6
22	The Role of Photon Energy in Free Charge Generation in Bulk Heterojunction Solar Cells. Advanced Energy Materials, 2014, 4, 1400416.	19.5	12
23	Carrier Recombination in Polymer Fullerene Solar Cells Probed by Reversible Exchange of Charge between the Active Layer and Electrodes Induced by a Linearly Varying Voltage. Journal of Physical Chemistry C, 2013, 117, 3210-3220.	3.1	10
24	Simultaneous Openâ€Circuit Voltage Enhancement and Shortâ€Circuit Current Loss in Polymer: Fullerene Solar Cells Correlated by Reduced Quantum Efficiency for Photoinduced Electron Transfer. Advanced Energy Materials, 2013, 3, 85-94.	19.5	77
25	Evidence for space-charge-limited conduction in organic photovoltaic cells at open-circuit conditions. Physical Review B, 2013, 87, .	3.2	17
26	Effect of PCBM on the Photodegradation Kinetics of Polymers for Organic Photovoltaics. Chemistry of Materials, 2012, 24, 4397-4405.	6.7	73
27	Influence of Photon Excess Energy on Charge Carrier Dynamics in a Polymerâ€Fullerene Solar Cell. Advanced Energy Materials, 2012, 2, 1095-1099.	19.5	69
28	Influence of cathode oxidation via the hole extraction layer in polymer:fullerene solar cells. Organic Electronics, 2011, 12, 736-744.	2.6	255
29	Efficient Solar Cells Based on an Easily Accessible Diketopyrrolopyrrole Polymer. Advanced Materials, 2010, 22, E242-6.	21.0	358
30	Improved Film Morphology Reduces Charge Carrier Recombination into the Triplet Excited State in a Small Bandgap Polymerâ€Fullerene Photovoltaic Cell. Advanced Materials, 2010, 22, 4321-4324.	21.0	151