
Justin Ball

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4532088/publications.pdf Version: 2024-02-01

ΙΠΟΣΤΙΝ ΒΑΓΙ

#	Article	IF	CITATIONS
1	ARC: A compact, high-field, fusion nuclear science facility and demonstration power plant with demountable magnets. Fusion Engineering and Design, 2015, 100, 378-405.	1.9	339
2	Physics research on the TCV tokamak facility: from conventional to alternative scenarios and beyond. Nuclear Fusion, 2019, 59, 112023.	3.5	43
3	Toroidal and slab ETG instability dominance in the linear spectrum of JET-ILW pedestals. Nuclear Fusion, 2020, 60, 126045.	3.5	40
4	Intrinsic momentum transport in up–down asymmetric tokamaks. Plasma Physics and Controlled Fusion, 2014, 56, 095014.	2.1	22
5	How eigenmode self-interaction affects zonal flows and convergence of tokamak core turbulence with toroidal system size. Journal of Plasma Physics, 2020, 86, .	2.1	13
6	Eliminating turbulent self-interaction through the parallel boundary condition in local gyrokinetic simulations. Journal of Plasma Physics, 2020, 86, .	2.1	12
7	Development of advanced linearized gyrokinetic collision operators using a moment approach. Journal of Plasma Physics, 2021, 87, .	2.1	11
8	Simulating background shear flow in local gyrokinetic simulations. Plasma Physics and Controlled Fusion, 2019, 61, 055006.	2.1	9
9	Three-dimensional inhomogeneity of electron-temperature-gradient turbulence in the edge of tokamak plasmas. Nuclear Fusion, 2022, 62, 086045.	3.5	7
10	Optimized up–down asymmetry to drive fast intrinsic rotation in tokamaks. Nuclear Fusion, 2018, 58, 026003.	3.5	6
11	Effect of collisions on non-adiabatic electron dynamics in ITG-driven microturbulence. Physics of Plasmas, 2021, 28, 092303.	1.9	6
12	Conditions for up-down asymmetry in the core of tokamak equilibria. Nuclear Fusion, 2014, 54, 093003.	3.5	5
13	Intuition for the radial penetration of flux surface shaping in tokamaks. Plasma Physics and Controlled Fusion, 2015, 57, 035006.	2.1	5
14	The effect of background flow shear on gyrokinetic turbulence in the cold ion limit. Plasma Physics and Controlled Fusion, 2019, 61, 064004.	2.1	5
15	A non-twisting flux tube for local gyrokinetic simulations. Plasma Physics and Controlled Fusion, 2021, 63, 064008.	2.1	4
16	Turbulent momentum transport due to the beating between different tokamak flux surface shaping effects. Plasma Physics and Controlled Fusion, 2017, 59, 024007.	2.1	2
17	Effect of the Shafranov shift and the gradient of <i>β</i> on intrinsic momentum transport in up–down asymmetric tokamaks. Plasma Physics and Controlled Fusion, 2016, 58, 125015.	2.1	1
18	Maximizing specific energy by breeding deuterium. Nuclear Fusion, 2019, 59, 106043.	3.5	1