Lin-Chi Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/453179/publications.pdf

Version: 2024-02-01

212478 214428 2,531 62 28 50 h-index citations g-index papers 63 63 63 4888 all docs docs citations times ranked citing authors

#	Article	IF	Citations
1	Impedimetric aptasensing using a symmetric Randles circuit model. Electrochimica Acta, 2020, 337, 135750.	2.6	8
2	Spectral contrast imaging method for mapping transmission surface plasmon images in metallic nanostructures. Biosensors and Bioelectronics, 2019, 142, 111545.	5.3	4
3	Diffusion impedance modeling for interdigitated array electrodes by conformal mapping and cylindrical finite length approximation. Electrochimica Acta, 2019, 320, 134629.	2.6	4
4	Development of a Potentionmetric CO2 Sensor Chip Based on the Solid-Contact Ion-Selecitve Electrodes. , 2019, , .		0
5	Fabrication of a PVC-based solid-state Ag/AgCl reference electrode. , 2019, , .		4
6	A smartphone sensing system for solid-contact ion-selective electrodes. , 2019, , .		0
7	Microfluidic amperometry with two symmetric Au microelectrodes under one-way and shuttle flow conditions. Electrochimica Acta, 2019, 297, 118-128.	2.6	8
8	Confocal epifluorescence sensor with an arc-shaped aperture for slide-based PCR quantification. Biosensors and Bioelectronics, 2018, 100, 71-78.	5. 3	3
9	Cell-on-a-Chip with Reversible Package for Studying the Drug Metabolism Between Cancer and Liver Cells. , 2018, , .		0
10	Selection of aptamers for AMACR detection from DNA libraries with different primers. RSC Advances, 2018, 8, 19067-19074.	1.7	8
11	Signal-on Protein Detection via Dye Translocation between Aptamer and Quantum Dot. ACS Applied Materials & Dot. 100 Applied Materials & Dot. 2016, 8, 12048-12055.	4.0	28
12	Electro-Engineered Polymeric Films for the Development of Sensitive Aptasensors for Prostate Cancer Marker Detection. ACS Sensors, 2016, 1, 1308-1314.	4.0	35
13	Multicolor electrochromic thin films and devices based on the Prussian blue family nanoparticles. Solar Energy Materials and Solar Cells, 2016, 145, 26-34.	3.0	68
14	Molybdate hexacyanoferrate (MoOHCF) thin film: A brownish red Prussian blue analog for electrochromic window application. Solar Energy Materials and Solar Cells, 2016, 145, 8-15.	3.0	24
15	Synthesis and characterization of Pd–Ni core–shell nanocatalysts for alkaline glucose electrooxidation. RSC Advances, 2015, 5, 53333-53339.	1.7	8
16	Synthetic multivalent DNAzymes for enhanced hydrogen peroxide catalysis and sensitive colorimetric glucose detection. Analytica Chimica Acta, 2015, 856, 96-102.	2.6	30
17	Tunable coverage of immobilized biomolecules for biofunctional interface design. Biomaterials Science, 2015, 3, 1266-1269.	2.6	15
18	A selective decoy–doxorubicin complex for targeted co-delivery, STAT3 probing and synergistic anti-cancer effect. Chemical Communications, 2015, 51, 13309-13312.	2.2	4

#	Article	IF	Citations
19	Graphene Nanosheets/Poly(3,4-ethylenedioxythiophene) Nanotubes Composite Materials for Electrochemical Biosensing Applications. Electrochimica Acta, 2015, 172, 61-70.	2.6	17
20	A binary palladium–bismuth nanocatalyst with high activity and stability for alkaline glucose electrooxidation. Journal of Power Sources, 2015, 287, 323-333.	4.0	59
21	Functionalized Carbon Nanomaterial Supported Palladium Nano-Catalysts for Electrocatalytic Glucose Oxidation Reaction. Electrochimica Acta, 2015, 152, 408-416.	2.6	76
22	Using poly(3-aminophenylboronic acid) thin film with binding-induced ion flux blocking for amperometric detection of hemoglobin A1c. Biosensors and Bioelectronics, 2015, 63, 317-324.	5.3	44
23	Selection of aptamers targeting the sialic acid receptor of hemagglutinin by epitope-specific SELEX. Chemical Communications, 2014, 50, 8719-8722.	2.2	24
24	Selection of aptamers for fluorescent detection of alpha-methylacyl-CoA racemase by single-bead SELEX. Biosensors and Bioelectronics, 2014, 62, 106-112.	5.3	25
25	Aptamer microarray as a novel bioassay for protein–protein interaction discovery and analysis. Biosensors and Bioelectronics, 2013, 42, 248-255.	5.3	15
26	Synthesis of Redox Polymer Nanobeads and Nanocomposites for Glucose Biosensors. ACS Applied Materials & Samp; Interfaces, 2013, 5, 7852-7861.	4.0	79
27	Hydrothermal Synthesis of Binary Ni–Co Hydroxides and Carbonate Hydroxides as Pseudosupercapacitors. European Journal of Inorganic Chemistry, 2013, 2013, 39-43.	1.0	62
28	Prussian blue nanoparticles as nanocargoes for delivering DNA drugs to cancer cells. Science and Technology of Advanced Materials, 2013, 14, 044405.	2.8	32
29	Block copolymer assisted synthesis of porous α-Ni(OH)2 microflowers with high surface areas as electrochemical pseudocapacitor materials. Chemical Communications, 2012, 48, 9150.	2.2	124
30	A glucose bio-battery prototype based on a GDH/poly(methylene blue) bioanode and a graphite cathode with an iodide/tri-iodide redox couple. Bioresource Technology, 2012, 116, 502-506.	4.8	18
31	Nanoporous carbons through direct carbonization of a zeolitic imidazolate framework for supercapacitor electrodes. Chemical Communications, 2012, 48, 7259.	2.2	624
32	Nano-Prussian blue analogue/PEDOT:PSS composites for electrochromic windows. Solar Energy Materials and Solar Cells, 2012, 104, 64-74.	3.0	44
33	Electrochemistry of toluidine blue O in situ bound to a DNA-modified electrode., 2011,,.		0
34	A complementary electrochromic system based on a Prussian blue thin film and a heptyl viologen solution. Solar Energy Materials and Solar Cells, 2011, 95, 3074-3080.	3.0	37
35	A novel DNA selection and direct extraction process and its application in DNA recombination. Electrophoresis, 2011, 32, 423-430.	1.3	8
36	A quantum dot-aptamer beacon using a DNA intercalating dye as the FRET reporter: Application to label-free thrombin detection. Biosensors and Bioelectronics, 2011, 26, 3346-3352.	5.3	115

#	Article	IF	Citations
37	Fabrication of nanocatalyst-enhanced enzyme electrode and application in glucose biofuel cells. , 2011, , .		O
38	A red-to-gray poly(3-methylthiophene) electrochromic device using a zinc hexacyanoferrate/PEDOT:PSS composite counter electrode. Electrochimica Acta, 2010, 55, 3966-3973.	2.6	46
39	Encapsulating benzoquinone and glucose oxidase with a PEDOT film: Application to oxygen-independent glucose sensors and glucose/O2 biofuel cells. Bioresource Technology, 2010, 101, 5480-5486.	4.8	39
40	A bioanode based on MWCNT/protein-assisted co-immobilization of glucose oxidase and 2,5-dihydroxybenzaldehyde for glucose fuel cells. Biosensors and Bioelectronics, 2010, 25, 2515-2521.	5.3	60
41	Glucose sensing electrodes based on a poly(3,4-ethylenedioxythiophene)/Prussian blue bilayer and multi-walled carbon nanotubes. Biosensors and Bioelectronics, 2009, 24, 2015-2020.	5. 3	89
42	Enhancement of Aptamer Microarray Sensitivity through Spacer Optimization and Avidity Effect. Analytical Chemistry, 2009, 81, 1747-1754.	3.2	78
43	Turning Glucose and Starch into Electricity with an Enzymatic Fuel Cell. Engineering in Agriculture, Environment and Food, 2009, 2, 1-6.	0.2	1
44	Deposition-order-dependent polyelectrochromic and redox behaviors of the polyaniline–prussian blue bilayer. Electrochimica Acta, 2008, 53, 6215-6227.	2.6	31
45	Multimode optoelectrochemical detection of cysteine based on an electrochromic Prussian blue electrodeâ~†. Sensors and Actuators B: Chemical, 2008, 130, 418-424.	4.0	23
46	Influence of coloring voltage on the optical performance and cycling stability of a polyaniline–indium hexacyanoferrate electrochromic system. Solar Energy Materials and Solar Cells, 2008, 92, 112-119.	3.0	38
47	Stability-enhanced indium hexacyanoferrate electrodes: Morphological characterization, in situ EQCM analysis in nonaqueous electrolytes and application to a WO3 electrochromic device. Electrochimica Acta, 2008, 53, 5306-5314.	2.6	13
48	General Kinetic Model for Amperometric Sensors Based on Prussian Blue Mediator and Its Analogs: Application to Cysteine Detection. Electroanalysis, 2006, 18, 1313-1321.	1.5	5
49	Amperometric Detection of Cysteine at an In3+ Stabilized Indium Hexacyanoferrate Modified Electrode. Electroanalysis, 2006, 18, 1306-1312.	1.5	33
50	Amperometric detection of hydrogen peroxide at a Prussian Blue-modified FTO electrode. Sensors and Actuators B: Chemical, 2005, 108, 738-745.	4.0	66
51	Colorimetric detection of morphine in a molecularly imprinted polymer using an aqueous mixture of Fe3+ and [Fe(CN)6]3â^. Analytica Chimica Acta, 2004, 504, 141-147.	2.6	34
52	Amperometric detection of morphine at a Prussian blue-modified indium tin oxide electrode. Biosensors and Bioelectronics, 2004, 20, 3-8.	5.3	85
53	An indium hexacyanoferrate–tungsten oxide electrochromic battery with a hybrid K+/H+-conducting polymer electrolyte. Solid State Ionics, 2003, 165, 257-267.	1.3	31
54	Switching behavior of the Prussian blue–indium hexacyanoferrate electrochromic device using the K+-doped poly-AMPS electrolyte. Solid State Ionics, 2003, 165, 269-277.	1.3	18

#	Article	IF	CITATION
55	The influences of operating voltage and cell gap on the performance of a solution-phase electrochromic device containing HV and TMPD. Solid State Ionics, 2003, 165, 279-287.	1.3	40
56	Nonlinear Diffusion Behavior for the Prussian Blue Electrode. II. Interpretation of Variable Diffusivity during the Insertion/Extraction Processes. Journal of the Electrochemical Society, 2002, 149, E40.	1.3	11
57	A complementary electrochromic system based on Prussian blue and indium hexacyanoferrate. Journal of Solid State Electrochemistry, 2002, 7, 6-10.	1.2	36
58	Enhanced electrodeposition of indium hexacyanoferrate thin films through improved plating solution stability. Journal of Solid State Electrochemistry, 2002, 7, 1-5.	1.2	10
59	Design equations for complementary electrochromic devices: application to the tungsten oxide–Prussian blue system. Electrochimica Acta, 2001, 46, 2151-2158.	2.6	68
60	Interpretations of voltammograms in a typical two-electrode cell: application to complementary electrochromic systems. Electrochimica Acta, 2001, 46, 2159-2166.	2.6	7
61	Nonlinear Diffusion Behavior for the Prussian Blue Electrode: I. Variable Diffusivity Revealed by Potentiostatic Intermittent Titration Technique-Chronoabsorptometry. Journal of the Electrochemical Society, 2001, 148, E282.	1.3	10
62	<title>Influence of charge capacity ratio on the optical attenuation of a tungsten oxide-polyaniline electrochromic device</title> ., 1999,,.		5