List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/453179/publications.pdf Version: 2024-02-01



LIN-CHI CHEN

| #  | Article                                                                                                                                                                                   | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Nanoporous carbons through direct carbonization of a zeolitic imidazolate framework for supercapacitor electrodes. Chemical Communications, 2012, 48, 7259.                               | 4.1  | 624       |
| 2  | Block copolymer assisted synthesis of porous α-Ni(OH)2 microflowers with high surface areas as electrochemical pseudocapacitor materials. Chemical Communications, 2012, 48, 9150.        | 4.1  | 124       |
| 3  | A quantum dot-aptamer beacon using a DNA intercalating dye as the FRET reporter: Application to label-free thrombin detection. Biosensors and Bioelectronics, 2011, 26, 3346-3352.        | 10.1 | 115       |
| 4  | Glucose sensing electrodes based on a poly(3,4-ethylenedioxythiophene)/Prussian blue bilayer and multi-walled carbon nanotubes. Biosensors and Bioelectronics, 2009, 24, 2015-2020.       | 10.1 | 89        |
| 5  | Amperometric detection of morphine at a Prussian blue-modified indium tin oxide electrode.<br>Biosensors and Bioelectronics, 2004, 20, 3-8.                                               | 10.1 | 85        |
| 6  | Synthesis of Redox Polymer Nanobeads and Nanocomposites for Glucose Biosensors. ACS Applied<br>Materials & Interfaces, 2013, 5, 7852-7861.                                                | 8.0  | 79        |
| 7  | Enhancement of Aptamer Microarray Sensitivity through Spacer Optimization and Avidity Effect.<br>Analytical Chemistry, 2009, 81, 1747-1754.                                               | 6.5  | 78        |
| 8  | Functionalized Carbon Nanomaterial Supported Palladium Nano-Catalysts for Electrocatalytic<br>Glucose Oxidation Reaction. Electrochimica Acta, 2015, 152, 408-416.                        | 5.2  | 76        |
| 9  | Design equations for complementary electrochromic devices: application to the tungsten oxide–Prussian blue system. Electrochimica Acta, 2001, 46, 2151-2158.                              | 5.2  | 68        |
| 10 | Multicolor electrochromic thin films and devices based on the Prussian blue family nanoparticles.<br>Solar Energy Materials and Solar Cells, 2016, 145, 26-34.                            | 6.2  | 68        |
| 11 | Amperometric detection of hydrogen peroxide at a Prussian Blue-modified FTO electrode. Sensors and Actuators B: Chemical, 2005, 108, 738-745.                                             | 7.8  | 66        |
| 12 | Hydrothermal Synthesis of Binary Ni–Co Hydroxides and Carbonate Hydroxides as<br>Pseudosupercapacitors. European Journal of Inorganic Chemistry, 2013, 2013, 39-43.                       | 2.0  | 62        |
| 13 | A bioanode based on MWCNT/protein-assisted co-immobilization of glucose oxidase and 2,5-dihydroxybenzaldehyde for glucose fuel cells. Biosensors and Bioelectronics, 2010, 25, 2515-2521. | 10.1 | 60        |
| 14 | A binary palladium–bismuth nanocatalyst with high activity and stability for alkaline glucose electrooxidation. Journal of Power Sources, 2015, 287, 323-333.                             | 7.8  | 59        |
| 15 | A red-to-gray poly(3-methylthiophene) electrochromic device using a zinc hexacyanoferrate/PEDOT:PSS composite counter electrode. Electrochimica Acta, 2010, 55, 3966-3973.                | 5.2  | 46        |
| 16 | Nano-Prussian blue analogue/PEDOT:PSS composites for electrochromic windows. Solar Energy<br>Materials and Solar Cells, 2012, 104, 64-74.                                                 | 6.2  | 44        |
| 17 | Using poly(3-aminophenylboronic acid) thin film with binding-induced ion flux blocking for amperometric detection of hemoglobin A1c. Biosensors and Bioelectronics, 2015, 63, 317-324.    | 10.1 | 44        |
| 18 | The influences of operating voltage and cell gap on the performance of a solution-phase electrochromic device containing HV and TMPD. Solid State Ionics, 2003, 165, 279-287.             | 2.7  | 40        |

| #  | Article                                                                                                                                                                                                         | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Encapsulating benzoquinone and glucose oxidase with a PEDOT film: Application to<br>oxygen-independent glucose sensors and glucose/O2 biofuel cells. Bioresource Technology, 2010, 101,<br>5480-5486.           | 9.6  | 39        |
| 20 | Influence of coloring voltage on the optical performance and cycling stability of a<br>polyaniline–indium hexacyanoferrate electrochromic system. Solar Energy Materials and Solar Cells,<br>2008, 92, 112-119. | 6.2  | 38        |
| 21 | A complementary electrochromic system based on a Prussian blue thin film and a heptyl viologen solution. Solar Energy Materials and Solar Cells, 2011, 95, 3074-3080.                                           | 6.2  | 37        |
| 22 | A complementary electrochromic system based on Prussian blue and indium hexacyanoferrate. Journal of Solid State Electrochemistry, 2002, 7, 6-10.                                                               | 2.5  | 36        |
| 23 | Electro-Engineered Polymeric Films for the Development of Sensitive Aptasensors for Prostate Cancer<br>Marker Detection. ACS Sensors, 2016, 1, 1308-1314.                                                       | 7.8  | 35        |
| 24 | Colorimetric detection of morphine in a molecularly imprinted polymer using an aqueous mixture of Fe3+ and [Fe(CN)6]3â^'. Analytica Chimica Acta, 2004, 504, 141-147.                                           | 5.4  | 34        |
| 25 | Amperometric Detection of Cysteine at an In3+ Stabilized Indium Hexacyanoferrate Modified Electrode.<br>Electroanalysis, 2006, 18, 1306-1312.                                                                   | 2.9  | 33        |
| 26 | Prussian blue nanoparticles as nanocargoes for delivering DNA drugs to cancer cells. Science and Technology of Advanced Materials, 2013, 14, 044405.                                                            | 6.1  | 32        |
| 27 | An indium hexacyanoferrate–tungsten oxide electrochromic battery with a hybrid K+/H+-conducting polymer electrolyte. Solid State Ionics, 2003, 165, 257-267.                                                    | 2.7  | 31        |
| 28 | Deposition-order-dependent polyelectrochromic and redox behaviors of the polyaniline–prussian blue bilayer. Electrochimica Acta, 2008, 53, 6215-6227.                                                           | 5.2  | 31        |
| 29 | Synthetic multivalent DNAzymes for enhanced hydrogen peroxide catalysis and sensitive colorimetric glucose detection. Analytica Chimica Acta, 2015, 856, 96-102.                                                | 5.4  | 30        |
| 30 | Signal-on Protein Detection via Dye Translocation between Aptamer and Quantum Dot. ACS Applied<br>Materials & Interfaces, 2016, 8, 12048-12055.                                                                 | 8.0  | 28        |
| 31 | Selection of aptamers for fluorescent detection of alpha-methylacyl-CoA racemase by single-bead SELEX. Biosensors and Bioelectronics, 2014, 62, 106-112.                                                        | 10.1 | 25        |
| 32 | Selection of aptamers targeting the sialic acid receptor of hemagglutinin by epitope-specific SELEX.<br>Chemical Communications, 2014, 50, 8719-8722.                                                           | 4.1  | 24        |
| 33 | Molybdate hexacyanoferrate (MoOHCF) thin film: A brownish red Prussian blue analog for electrochromic window application. Solar Energy Materials and Solar Cells, 2016, 145, 8-15.                              | 6.2  | 24        |
| 34 | Multimode optoelectrochemical detection of cysteine based on an electrochromic Prussian blue electrodeâ~†. Sensors and Actuators B: Chemical, 2008, 130, 418-424.                                               | 7.8  | 23        |
| 35 | Switching behavior of the Prussian blue–indium hexacyanoferrate electrochromic device using the<br>K+-doped poly-AMPS electrolyte. Solid State Ionics, 2003, 165, 269-277.                                      | 2.7  | 18        |
| 36 | A glucose bio-battery prototype based on a GDH/poly(methylene blue) bioanode and a graphite cathode<br>with an iodide/tri-iodide redox couple. Bioresource Technology, 2012, 116, 502-506.                      | 9.6  | 18        |

| #  | Article                                                                                                                                                                                                                                 | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Graphene Nanosheets/Poly(3,4-ethylenedioxythiophene) Nanotubes Composite Materials for Electrochemical Biosensing Applications. Electrochimica Acta, 2015, 172, 61-70.                                                                  | 5.2  | 17        |
| 38 | Aptamer microarray as a novel bioassay for protein–protein interaction discovery and analysis.<br>Biosensors and Bioelectronics, 2013, 42, 248-255.                                                                                     | 10.1 | 15        |
| 39 | Tunable coverage of immobilized biomolecules for biofunctional interface design. Biomaterials Science, 2015, 3, 1266-1269.                                                                                                              | 5.4  | 15        |
| 40 | Stability-enhanced indium hexacyanoferrate electrodes: Morphological characterization, in situ<br>EQCM analysis in nonaqueous electrolytes and application to a WO3 electrochromic device.<br>Electrochimica Acta, 2008, 53, 5306-5314. | 5.2  | 13        |
| 41 | Nonlinear Diffusion Behavior for the Prussian Blue Electrode. II. Interpretation of Variable Diffusivity during the Insertion/Extraction Processes. Journal of the Electrochemical Society, 2002, 149, E40.                             | 2.9  | 11        |
| 42 | Nonlinear Diffusion Behavior for the Prussian Blue Electrode: I. Variable Diffusivity Revealed by<br>Potentiostatic Intermittent Titration Technique-Chronoabsorptometry. Journal of the<br>Electrochemical Society, 2001, 148, E282.   | 2.9  | 10        |
| 43 | Enhanced electrodeposition of indium hexacyanoferrate thin films through improved plating solution stability. Journal of Solid State Electrochemistry, 2002, 7, 1-5.                                                                    | 2.5  | 10        |
| 44 | A novel DNA selection and direct extraction process and its application in DNA recombination.<br>Electrophoresis, 2011, 32, 423-430.                                                                                                    | 2.4  | 8         |
| 45 | Synthesis and characterization of Pd–Ni core–shell nanocatalysts for alkaline glucose<br>electrooxidation. RSC Advances, 2015, 5, 53333-53339.                                                                                          | 3.6  | 8         |
| 46 | Selection of aptamers for AMACR detection from DNA libraries with different primers. RSC Advances, 2018, 8, 19067-19074.                                                                                                                | 3.6  | 8         |
| 47 | Microfluidic amperometry with two symmetric Au microelectrodes under one-way and shuttle flow conditions. Electrochimica Acta, 2019, 297, 118-128.                                                                                      | 5.2  | 8         |
| 48 | Impedimetric aptasensing using a symmetric Randles circuit model. Electrochimica Acta, 2020, 337, 135750.                                                                                                                               | 5.2  | 8         |
| 49 | Interpretations of voltammograms in a typical two-electrode cell: application to complementary electrochromic systems. Electrochimica Acta, 2001, 46, 2159-2166.                                                                        | 5.2  | 7         |
| 50 | <title>Influence of charge capacity ratio on the optical attenuation of a tungsten oxide-polyaniline&lt;br&gt;electrochromic device</title> . , 1999, , .                                                                               |      | 5         |
| 51 | General Kinetic Model for Amperometric Sensors Based on Prussian Blue Mediator and Its Analogs:<br>Application to Cysteine Detection. Electroanalysis, 2006, 18, 1313-1321.                                                             | 2.9  | 5         |
| 52 | A selective decoy–doxorubicin complex for targeted co-delivery, STAT3 probing and synergistic anti-cancer effect. Chemical Communications, 2015, 51, 13309-13312.                                                                       | 4.1  | 4         |
| 53 | Spectral contrast imaging method for mapping transmission surface plasmon images in metallic nanostructures. Biosensors and Bioelectronics, 2019, 142, 111545.                                                                          | 10.1 | 4         |
| 54 | Diffusion impedance modeling for interdigitated array electrodes by conformal mapping and cylindrical finite length approximation. Electrochimica Acta, 2019, 320, 134629.                                                              | 5.2  | 4         |

| #  | Article                                                                                                                                             | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Fabrication of a PVC-based solid-state Ag/AgCl reference electrode. , 2019, , .                                                                     |      | 4         |
| 56 | Confocal epifluorescence sensor with an arc-shaped aperture for slide-based PCR quantification.<br>Biosensors and Bioelectronics, 2018, 100, 71-78. | 10.1 | 3         |
| 57 | Turning Glucose and Starch into Electricity with an Enzymatic Fuel Cell. Engineering in Agriculture,<br>Environment and Food, 2009, 2, 1-6.         | 0.5  | 1         |
| 58 | Electrochemistry of toluidine blue O in situ bound to a DNA-modified electrode. , 2011, , .                                                         |      | 0         |
| 59 | Fabrication of nanocatalyst-enhanced enzyme electrode and application in glucose biofuel cells. , 2011, , ,                                         |      | Ο         |
| 60 | Cell-on-a-Chip with Reversible Package for Studying the Drug Metabolism Between Cancer and Liver<br>Cells. , 2018, , .                              |      | 0         |
| 61 | Development of a Potentionmetric CO2 Sensor Chip Based on the Solid-Contact Ion-Selecitve Electrodes. , 2019, , .                                   |      | Ο         |
| 62 | A smartphone sensing system for solid-contact ion-selective electrodes. , 2019, , .                                                                 |      | 0         |