Yuanlai Cui

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4531655/publications.pdf

Version: 2024-02-01

		331670	395702
59	1,283	21	33
papers	citations	h-index	g-index
60	60	60	1246
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Assessment of water pollution in the Tibetan Plateau with contributions from agricultural and economic sectors: a case study of Lhasa River Basin. Environmental Science and Pollution Research, 2022, 29, 20617-20631.	5.3	2
2	Utilizing artificial neural network to simulate and predict the hydraulic performance of free water surface constructed wetlands. Journal of Environmental Management, 2022, 305, 114334.	7.8	8
3	Spatial-Temporal Variation in Paddy Evapotranspiration in Subtropical Climate Regions Based on the SEBAL Model: A Case Study of the Ganfu Plain Irrigation System, Southern China. Remote Sensing, 2022, 14, 1201.	4.0	7
4	Machine learning exhibited excellent advantages in the performance simulation and prediction of free water surface constructed wetlands. Journal of Environmental Management, 2022, 309, 114694.	7.8	8
5	Regional water-saving potential calculation method for paddy rice based on remote sensing. Agricultural Water Management, 2022, 267, 107610.	5.6	8
6	Improvement and testing of ORYZA model water balance modules for alternate wetting and drying irrigation. Agricultural Water Management, 2022, 271, 107802.	5.6	2
7	Calculation framework for agricultural irrigation water consumption in multi-source irrigation systems. Agricultural Water Management, 2021, 244, 106603.	5.6	7
8	Mapping paddy rice using Landsat time series data in the Ganfu Plain irrigation system, Southern China, from 1988â~'2017. International Journal of Remote Sensing, 2021, 42, 1556-1576.	2.9	19
9	Effect of Watershed Delineation and Climate Datasets Density on Runoff Predictions for the Upper Mississippi River Basin Using SWAT within HAWQS. Water (Switzerland), 2021, 13, 422.	2.7	9
10	Global sensitivity analysis and uncertainty analysis for drought stress parameters in the ORYZA (v3) model. Agronomy Journal, 2021, 113, 1407-1419.	1.8	3
11	Variations and Drivers of Methane Fluxes from Double-Cropping Paddy Fields in Southern China at Diurnal, Seasonal and Inter-Seasonal Timescales. Water (Switzerland), 2021, 13, 2171.	2.7	8
12	Transport and transformation of water and nitrogen under different irrigation modes and urea application regimes in paddy fields. Agricultural Water Management, 2021, 255, 107024.	5.6	25
13	CO2 fluxes over two paddy fields with different management practices in Southern China. Agricultural and Forest Meteorology, 2021, 310, 108650.	4.8	6
14	An exploration of plant characteristics for plant species selection in wetlands. Ecological Engineering, 2020, 143, 105674.	3.6	5
15	Controlled Irrigation for Paddy Rice in China [*] . Irrigation and Drainage, 2020, 69, 61-74.	1.7	9
16	Assessing forecasting performance of daily reference evapotranspiration using public weather forecast and numerical weather prediction. Journal of Hydrology, 2020, 590, 125547.	5.4	16
17	Impacts of land use and land cover changes on regional climate in the Lhasa River basin, Tibetan Plateau. Science of the Total Environment, 2020, 742, 140570.	8.0	58
18	Response of solute transport model parameters to the combination of multiple design parameters and their quantitative expression with hydraulic indicators of FWS-constructed wetlands. Environmental Science and Pollution Research, 2020, 27, 43283-43295.	5.3	3

#	Article	IF	CITATIONS
19	Identification of the Roles of Climate Factors, Engineering Construction, and Agricultural Practices in Vegetation Dynamics in the Lhasa River Basin, Tibetan Plateau. Remote Sensing, 2020, 12, 1883.	4.0	14
20	Driving force analysis of irrigation water consumption using principal component regression analysis. Agricultural Water Management, 2020, 234, 106089.	5.6	32
21	Consistency analysis of the optimal combination of free water surface constructed wetland design optimization over different seasons. Ecological Engineering, 2020, 155, 105928.	3.6	7
22	Climate changes in the Lhasa River basin, Tibetan Plateau: irrigation-induced cooling along with a warming trend. Theoretical and Applied Climatology, 2020, 140, 1043-1054.	2.8	3
23	Analysis of alternative climate datasets and evapotranspiration methods for the Upper Mississippi River Basin using SWAT within HAWQS. Science of the Total Environment, 2020, 720, 137562.	8.0	27
24	Evaluation of six equations for daily reference evapotranspiration estimating using public weather forecast message for different climate regions across China. Agricultural Water Management, 2019, 222, 386-399.	5.6	31
25	Using boosted tree regression and artificial neural networks to forecast upland rice yield under climate change in Sahel. Computers and Electronics in Agriculture, 2019, 166, 105031.	7.7	41
26	Comparison of the Generalized Likelihood Uncertainty Estimation and Markov Chain Monte Carlo Methods for Uncertainty Analysis of the ORYZA_V3 Model. Agronomy Journal, 2019, 111, 555-564.	1.8	16
27	Energy partitioning and evapotranspiration over a rotated paddy field in Southern China. Agricultural and Forest Meteorology, 2019, 276-277, 107626.	4.8	18
28	Irrigation efficiency and water-saving potential considering reuse of return flow. Agricultural Water Management, 2019, 221, 519-527.	5.6	20
29	Calibration and Validation of the Hargreavesâ€Samani Model for Reference Evapotranspiration Estimation in China. Irrigation and Drainage, 2019, 68, 822-836.	1.7	14
30	Comparison of evapotranspiration measurements between eddy covariance and lysimeters in paddy fields under alternate wetting and drying irrigation. Paddy and Water Environment, 2019, 17, 725-739.	1.8	15
31	Improved test to determine design parameters for optimization of free surface flow constructed wetlands. Bioresource Technology, 2019, 280, 199-212.	9.6	27
32	Impacts of the channel/barrier effect and three-dimensional climateâ€"A case study of rice water requirement and irrigation quota in Yunnan, China. Agricultural Water Management, 2019, 212, 317-327.	5.6	10
33	Reuse of return flows and its scale effect in irrigation systems based on modified SWAT model. Agricultural Water Management, 2019, 213, 280-288.	5.6	27
34	Assessment of spatiotemporal variability of reference evapotranspiration and controlling climate factors over decades in China using geospatial techniques. Agricultural Water Management, 2019, 213, 499-511.	5.6	28
35	Irrigation scheduling of paddy rice using short-term weather forecast data. Agricultural Water Management, 2019, 213, 714-723.	5.6	43
36	Improvement and testing of SWAT for multi-source irrigation systems with paddy rice. Journal of Hydrology, 2019, 568, 1031-1041.	5.4	22

#	Article	IF	Citations
37	Study on nitrogen removal from rice paddy field drainage by interaction of plant species and hydraulic conditions in eco-ditches. Environmental Science and Pollution Research, 2019, 26, 6492-6502.	5.3	12
38	Short-term forecasting of daily reference evapotranspiration using the reduced-set Penman-Monteith model and public weather forecasts. Agricultural Water Management, 2019, 211, 70-80.	5.6	44
39	Web-based decision support system for canal irrigation management. Computers and Electronics in Agriculture, 2019, 161, 312-321.	7.7	21
40	Short-term daily forecasting of crop evapotranspiration of rice using public weather forecasts. Paddy and Water Environment, 2018, 16, 397-410.	1.8	10
41	Short-term forecasting of daily crop evapotranspiration using the â€K _c -ET _o ' approach and public weather forecasts. Archives of Agronomy and Soil Science, 2018, 64, 903-915.	2.6	14
42	Effects of water-saving irrigation on weed infestation and diversity in paddy fields in East China. Paddy and Water Environment, 2017, 15, 593-604.	1.8	9
43	Tracer study of the hydraulic performance of constructed wetlands planted with three different aquatic plant species. Ecological Engineering, 2017, 102, 433-442.	3.6	27
44	Test study of the optimal design for hydraulic performance and treatment performance of free water surface flow constructed wetland. Bioresource Technology, 2017, 238, 461-471.	9.6	46
45	Assessment of uncertainty and sensitivity analyses for ORYZA model under different ranges of parameter variation. European Journal of Agronomy, 2017, 91, 54-62.	4.1	30
46	Integrating Ecological Restoration of Agricultural Non-Point Source Pollution in Poyang Lake Basin in China. Water (Switzerland), 2017, 9, 745.	2.7	24
47	Global sensitivity analysis of outputs over rice-growth process in ORYZA model. Environmental Modelling and Software, 2016, 83, 36-46.	4.5	28
48	Short-term forecasting of daily reference evapotranspiration using the Penman-Monteith model and public weather forecasts. Agricultural Water Management, 2016, 177, 329-339.	5.6	52
49	Influence of water management on the water cycle in a small watershed irrigation system based on a distributed hydrologic model. Agricultural Water Management, 2016, 174, 52-60.	5.6	22
50	Hindcasting the effects of climate change on rice yields, irrigation requirements, and water productivity. Paddy and Water Environment, 2015, 13, 81-89.	1.8	19
51	Local storages: the impact on hydrology and implications for policy making in irrigation systems. Water International, 2012, 37, 395-407.	1.0	8
52	Natural disaster risk communication-understandings, framework, targets and challenges. , 2012, , .		1
53	Temporal and spatial changes of agricultural water requirements in the Lancang River Basin. Journal of Chinese Geography, 2012, 22, 441-450.	3.9	4
54	Development and test of SWAT for modeling hydrological processes in irrigation districts with paddy rice. Journal of Hydrology, 2011, 396, 61-71.	5.4	147

Yuanlai Cui

#	Article	IF	CITATIONS
55	Spatio-temporal Analysis in Land Use Change and Its Application in Lijiang Region. , 2010, , .		O
56	The Design and Implement of Marine Remote Sensing Multidimensional Dynamic Visualization System Based on COM. , 2010, , .		0
57	Application of system dynamics approach for time varying water balance in aerobic paddy fields. Paddy and Water Environment, 2009, 7, 1-9.	1.8	20
58	Spatial variability of irrigation factors and their relationships with "corridor-barrier―functions in the Longitudinal Range-Gorge Region. Science Bulletin, 2007, 52, 33-41.	1.7	4
59	Effect of irrigation method and N-fertilizer management on rice yield, water productivity and nutrient-use efficiencies in typical lowland rice conditions in China. Paddy and Water Environment, 2004, 2, 195-206.	1.8	142