
Oleksandr I Datsenko

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4531365/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Influence of anharmonicity and interlayer interaction on Raman spectra in mono- and few-layer MoS2: A computational study. Physica E: Low-Dimensional Systems and Nanostructures, 2022, 136, 114999.	1.3	9
2	Metamorphic InAs/InAlAs/InGaAs quantum dots: Establishing the limit for indium composition in InGaAs buffers. Microelectronic Engineering, 2022, 263, 111840.	1.1	0
3	MoS2 monolayer quantum dots on a flake: Efficient sensitization of exciton and trion photoluminescence via resonant nonradiative energy and charge transfers. Applied Surface Science, 2022, 601, 154209.	3.1	4
4	InAs/InGaAs quantum dots confined by InAlAs barriers for enhanced room temperature light emission: Photoelectric properties and deep levels. Microelectronic Engineering, 2021, 238, 111514.	1.1	8
5	Lateral photoconductivity of GeSn alloys. , 2021, , .		0
6	Trion Binding Energy Variation on Photoluminescence Excitation Energy and Power during Direct to Indirect Bandgap Crossover in Monolayer and Few-Layer MoS ₂ . Journal of Physical Chemistry C, 2021, 125, 17806-17819.	1.5	22
7	Influence of hydrogen plasma treatment on secondary phases in CZTS thin films for energy harvesting. Materials Today Communications, 2021, 28, 102664.	0.9	7
8	Hexagram bi-layer MoS2 flake: The impact of polycrystallinity and strains on the exciton and trion photoluminescence. Surfaces and Interfaces, 2021, 26, 101343.	1.5	6
9	Defect levels and interface space charge area responsible for negative photovoltage component in InAs/GaAs quantum dot photodetector structure. Microelectronic Engineering, 2020, 230, 111367.	1.1	4
10	Raman mapping of MoS2 at Cu2ZnSnS4/Mo interface in thin film. Solar Energy, 2020, 205, 154-160.	2.9	25
11	Photoelectric and deep level study of metamorphic InAs/InGaAs quantum dots with GaAs confining barriers for photoluminescence enhancement. Semiconductor Science and Technology, 2020, 35, 095022.	1.0	3
12	Exciton and trion in few-layer MoS2: Thickness- and temperature-dependent photoluminescence. Applied Surface Science, 2020, 515, 146033.	3.1	79
13	Near-infrared lateral photoresponse in InGaAs/GaAs quantum dots. Semiconductor Science and Technology, 2020, 35, 055029.	1.0	14
14	Metamorphic InAs/InGaAs Quantum Dot Structures: Photoelectric Properties and Deep Levels. Springer Proceedings in Physics, 2020, , 319-336.	0.1	1
15	Red-shifted photoluminescence and gamma irradiation stability of "micromorph―(nc-Si/SiO)/DLC down-converter anti-reflection coatings. Diamond and Related Materials, 2019, 100, 107578.	1.8	8
16	Control of secondary phases and disorder degree in Cu2ZnSnS4 films by sulfurization at varied subatmospheric pressures. Solar Energy Materials and Solar Cells, 2019, 200, 109915.	3.0	33
17	Defect influence on in-plane photocurrent of InAs/InGaAs quantum dot array: long-term electron trapping and Coulomb screening. Nanotechnology, 2019, 30, 305701.	1.3	15
18	Kinetics peculiarities of photovoltage in vertical metamorphic InAs/InGaAs quantum dot structures. Semiconductor Science and Technology, 2019, 34, 075025.	1.0	6

Oleksandr I Datsenko

#	Article	IF	CITATIONS
19	Effect of Nucleic Acids on Oxidation and Photoluminescence of Porous Silicon. Journal of Nano- and Electronic Physics, 2019, 11, 03005-1-03005-5.	0.2	2
20	Secondary phases in Cu 2 ZnSnS 4 films obtained by spray pyrolysis at different substrate temperatures and Cu contents. Materials Letters, 2018, 216, 173-175.	1.3	25
21	Thickness-dependent structural parameters of kesterite Cu 2 ZnSnSe 4 thin films for solar cell absorbers. Materials Letters, 2018, 225, 82-84.	1.3	8
22	Interband Photoconductivity of Metamorphic InAs/InGaAs Quantum Dots in the 1.3–1.55-μm Window. Nanoscale Research Letters, 2018, 13, 103.	3.1	14
23	Optical windows for head tissues in nearâ€infrared and shortâ€wave infrared regions: Approaching transcranial light applications. Journal of Biophotonics, 2018, 11, e201800141.	1.1	128
24	Investigation of Mechanisms of Potassium and Cesium-137 Uptake by Plants with Optical and Gamma Spectrometries in the Field under Water-Stressed Conditions. Ukrainian Journal of Physics, 2018, 63, 238.	0.1	0
25	Deep levels in metamorphic InAs/InGaAs quantum dot structures with different composition of the embedding layers. Semiconductor Science and Technology, 2017, 32, 125001.	1.0	19
26	Comparative Study of Photoelectric Properties of Metamorphic InAs/InGaAs and InAs/GaAs Quantum Dot Structures. Nanoscale Research Letters, 2017, 12, 335.	3.1	17
27	Bipolar Effects in Photovoltage of Metamorphic InAs/InGaAs/GaAs Quantum Dot Heterostructures: Characterization and Design Solutions for Light-Sensitive Devices. Nanoscale Research Letters, 2017, 12, 559.	3.1	7
28	Optical transparence windows for head tissues in near and short-wave infrared regions. , 2017, , .		2
29	Photoluminescence of porous silicon as an indicator of its interaction with nucleic acids. EPJ Applied Physics, 2016, 76, 30401.	0.3	3
30	Intensity-dependent nonlinearity of the lateral photoconductivity in InGaAs/GaAs dot-chain structures. Journal of Applied Physics, 2016, 119, 184303.	1.1	16
31	Mechanistic interpretation of the varying selectivity of Cesium-137 and potassium uptake by radish (Raphanus sativus L.) under field conditions near Chernobyl. Journal of Environmental Radioactivity, 2016, 152, 85-91.	0.9	7
32	Characterization of Functional Layers of CdTe Crystals Subjected to Different Surface Treatments. IEEE Transactions on Nuclear Science, 2015, 62, 428-432.	1.2	7
33	Photoelectric properties of the metamorphic InAs/InGaAs quantum dot structure at room temperature. Journal of Applied Physics, 2015, 117, 214312.	1.1	16
34	Comparison of semi-insulating InAlAs and InP:Fe for InP-based buried-heterostructure QCLs. Journal of Crystal Growth, 2015, 425, 360-363.	0.7	4
35	Application of Luminescent Methods to the Diagnosis of the Functional State of Single-Celled Algae in Liquid Media**. Journal of Applied Spectroscopy, 2014, 81, 450-456.	0.3	1
36	Growth and Functional Characteristics of Chlamydomonas Actinochloris Culture at the Presence of the Surface Petrol Film. Hydrobiological Journal, 2012, 48, 71-78.	0.2	2

Oleksandr I Datsenko

#	Article	IF	CITATIONS
37	Luminexcence Control of the Microwave Irradiation Impact on Green Algae. Hydrobiological Journal, 2011, 47, 91-99.	0.2	0
38	Effect of Microwave Irradiation on Growth and Photoluminescence Efficiency of the Green Alga Chlamydomonas actinochloris. Hydrobiological Journal, 2010, 46, 99-104.	0.2	0
39	Evolution of photoluminescence and chemical composition of the nanostructured silicon in water solutions. Physica Status Solidi C: Current Topics in Solid State Physics, 2008, 5, 3818-3821.	0.8	3
40	Effect of ultrasound treatment on the optical properties of C60 fullerene films. Chemical Physics Letters, 2008, 467, 77-79.	1.2	1
41	Ellipsometric studies of porous silicon. Thin Solid Films, 1999, 342, 230-237.	0.8	11
42	Evolution of the porous silicon sample properties in the atmospheric ambient. Journal of Luminescence, 1999, 81, 263-270.	1.5	6
43	Effect of boron diffusion doping of silicon on the micromechanical and luminescent properties of porous layers. Thin Solid Films, 1998, 312, 202-206.	0.8	3
44	Structure and optical parameters of the system with porous silicon: ellipsometric study. , 1998, , .		2
45	Light-activated photoluminescence of porous silicon. , 1998, 3359, 227.		0
46	Formation of Intensive Photoluminescence in Porous Silicon. Materials Research Society Symposia Proceedings, 1995, 405, 193.	0.1	0