
Marco Ranocchiari

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4531220/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Highly selective Suzuki reaction catalysed by a molecular Pd–P-MOF catalyst under mild conditions: role of ligands and palladium speciation. Catalysis Science and Technology, 2022, 12, 954-961.	2.1	13
2	Catalyst overcoating engineering towards high-performance electrocatalysis. Chemical Society Reviews, 2022, 51, 188-236.	18.7	53
3	Copper–zinc oxide interface as a methanol-selective structure in Cu–ZnO catalyst during catalytic hydrogenation of carbon dioxide to methanol. Catalysis Science and Technology, 2022, 12, 2703-2716.	2.1	18
4	Unraveling the molecular mechanism of MIL-53(Al) crystallization. Nature Communications, 2022, 13, .	5.8	22
5	Thermal catalytic conversion: general discussion. Faraday Discussions, 2021, 230, 124-151.	1.6	Ο
6	Spatioâ€Chemical Heterogeneity of Defectâ€Engineered Metal–Organic Framework Crystals Revealed by Fullâ€Field Tomographic Xâ€ray Absorption Spectroscopy. Angewandte Chemie, 2021, 133, 10120-10127.	1.6	1
7	Spatioâ€Chemical Heterogeneity of Defectâ€Engineered Metal–Organic Framework Crystals Revealed by Fullâ€Field Tomographic Xâ€ray Absorption Spectroscopy. Angewandte Chemie - International Edition, 2021, 60, 10032-10039.	7.2	13
8	Mapping Vibrational Spectra to the Structures of Copper Species in Zeolites Based on Calculated Stretching Frequencies of Adsorbed Nitrogen and Carbon Monoxides. Journal of Physical Chemistry C, 2021, 125, 12094-12106.	1.5	11
9	On the Stability of Ptâ€Based Catalysts in HBr/Br ₂ Solution. Helvetica Chimica Acta, 2021, 104, e2100082.	1.0	1
10	Enlightening the journey of metal-organic framework (derived) catalysts during the oxygen evolution reaction in alkaline media via operando X-ray absorption spectroscopy. Current Opinion in Electrochemistry, 2021, 30, 100845.	2.5	5
11	Solvent-dependent textural properties of defective UiO-66 after acidic and basic treatment. Inorganic Chemistry Frontiers, 2021, 9, 70-77.	3.0	3
12	Heterogeneous Metal-Organic Framework Catalysts for Suzuki-Miyaura Cross Coupling in the Pharma Industry. Chimia, 2021, 75, 972.	0.3	6
13	Thermal degradation of defective high-surface-area UiO-66 in different gaseous environments. RSC Advances, 2021, 11, 38849-38855.	1.7	20
14	Influence of Water in the Synthesis of the Zirconium-Based Metal–Organic Framework UiO-66: Isolation and Reactivity of [ZrCl(OH) ₂ (DMF) ₂]Cl. Inorganic Chemistry, 2020, 59, 7860-7868.	1.9	29
15	Metal-organic frameworks as kinetic modulators for branched selectivity in hydroformylation. Nature Communications, 2020, 11, 1059.	5.8	40
16	The catalytic and radical mechanism for ethanol oxidation to acetic acid. Chemical Communications, 2019, 55, 11833-11836.	2.2	21
17	Increasing the activity of copper exchanged mordenite in the direct isothermal conversion of methane to methanol by Pt and Pd doping. Chemical Science, 2019, 10, 167-171.	3.7	17
18	Misconceptions and challenges in methane-to-methanol over transition-metal-exchanged zeolites. Nature Catalysis, 2019, 2, 485-494.	16.1	140

MARCO RANOCCHIARI

#	Article	IF	CITATIONS
19	Response to Comment on "Selective anaerobic oxidation of methane enables direct synthesis of methanol― Science, 2018, 359, .	6.0	1
20	Direct Stepwise Oxidation of Methane to Methanol over Cu–SiO ₂ . ACS Catalysis, 2018, 8, 5721-5731.	5.5	61
21	Direct Conversion of Methane to Methanol under Mild Conditions over Cu-Zeolites and beyond. Accounts of Chemical Research, 2017, 50, 418-425.	7.6	322
22	Selective anaerobic oxidation of methane enables direct synthesis of methanol. Science, 2017, 356, 523-527.	6.0	646
23	Comparative Study of Diverse Copper Zeolites for the Conversion of Methane into Methanol. ChemCatChem, 2017, 9, 3705-3713.	1.8	96
24	The Direct Catalytic Oxidation of Methane to Methanol—A Critical Assessment. Angewandte Chemie - International Edition, 2017, 56, 16464-16483.	7.2	537
25	In situ high-resolution powder X-ray diffraction study of UiO-66 under synthesis conditions in a continuous-flow microwave reactor. CrystEngComm, 2017, 19, 3206-3214.	1.3	28
26	Subnanometer Gold Clusters on Amino-Functionalized Silica: An Efficient Catalyst for the Synthesis of 1,3-Diynes by Oxidative Alkyne Coupling. ACS Catalysis, 2017, 7, 3414-3418.	5.5	40
27	Mixed-linker UiO-66: structure–property relationships revealed by a combination of high-resolution powder X-ray diffraction and density functional theory calculations. Physical Chemistry Chemical Physics, 2017, 19, 1551-1559.	1.3	47
28	Gold Particles Supported on Aminoâ€Functionalized Silica Catalyze Transfer Hydrogenation of Nâ€Heterocyclic Compounds. Advanced Synthesis and Catalysis, 2017, 359, 677-686.	2.1	35
29	Assessing the relative stability of copper oxide clusters as active sites of a CuMOR zeolite for methane to methanol conversion: size matters?. Nanoscale, 2017, 9, 1144-1153.	2.8	94
30	Response to Comment on "Selective anaerobic oxidation of methane enables direct synthesis of methanol― Science, 2017, 358, .	6.0	18
31	MOFs modeling and theory: general discussion. Faraday Discussions, 2017, 201, 233-245.	1.6	4
32	Electronic, magnetic and photophysical properties of MOFs and COFs: general discussion. Faraday Discussions, 2017, 201, 87-99.	1.6	9
33	New directions in gas sorption and separation with MOFs: general discussion. Faraday Discussions, 2017, 201, 175-194.	1.6	6
34	Catalysis in MOFs: general discussion. Faraday Discussions, 2017, 201, 369-394.	1.6	14
35	Metal–Organic Frameworks Invert Molecular Reactivity: Lewis Acidic Phosphonium Zwitterions Catalyze the Aldol-Tishchenko Reaction. Journal of the American Chemical Society, 2017, 139, 18166-18169.	6.6	30
36	Die direkte katalytische Oxidation von Methan zu Methanol – eine kritische Beurteilung. Angewandte Chemie, 2017, 129, 16684-16704.	1.6	51

MARCO RANOCCHIARI

#	Article	IF	CITATIONS
37	Continuousâ€Flow Microwave Synthesis of Metal–Organic Frameworks: A Highly Efficient Method for Largeâ€&cale Production. Chemistry - A European Journal, 2016, 22, 3245-3249.	1.7	132
38	Enantioselective Hydrogenation of Olefins Enhanced by Metal–Organic Framework Additives. ChemCatChem, 2016, 8, 308-312.	1.8	14
39	Isothermal Cyclic Conversion of Methane into Methanol over Copperâ€Exchanged Zeolite at Low Temperature. Angewandte Chemie, 2016, 128, 5557-5561.	1.6	70
40	Decomposition Process of Carboxylate MOF HKUST-1 Unveiled at the Atomic Scale Level. Journal of Physical Chemistry C, 2016, 120, 12879-12889.	1.5	99
41	Aging of the reaction mixture as a tool to modulate the crystallite size of UiO-66 into the low nanometer range. Chemical Communications, 2016, 52, 6411-6414.	2.2	39
42	Photocatalyzed Hydrogen Evolution from Water by a Composite Catalyst of NH ₂ â€MILâ€125(Ti) and Surface Nickel(II) Species. Chemistry - A European Journal, 2016, 22, 13894-13899.	1.7	62
43	Isothermal Cyclic Conversion of Methane into Methanol over Copperâ€Exchanged Zeolite at Low Temperature. Angewandte Chemie - International Edition, 2016, 55, 5467-5471.	7.2	184
44	Synthesis of sub-nanometer gold particles on modified silica. Dalton Transactions, 2016, 45, 2983-2988.	1.6	17
45	Methane to methanol over copper mordenite: yield improvement through multiple cycles and different synthesis techniques. Catalysis Science and Technology, 2016, 6, 5011-5022.	2.1	75
46	Bis(μ-oxo) versus mono(μ-oxo)dicopper cores in a zeolite for converting methane to methanol: an in situ XAS and DFT investigation. Physical Chemistry Chemical Physics, 2015, 17, 7681-7693.	1.3	137
47	Metal organic frameworks for photo-catalytic water splitting. Energy and Environmental Science, 2015, 8, 1923-1937.	15.6	277
48	Efficient microwave assisted synthesis of metal–organic framework UiO-66: optimization and scale up. Dalton Transactions, 2015, 44, 14019-14026.	1.6	104
49	Phosphine and phosphine oxide groups in metal–organic frameworks detected by P K-edge XAS. Physical Chemistry Chemical Physics, 2015, 17, 3326-3331.	1.3	23
50	Functionalized Ruthenium–Phosphine Metal–Organic Framework for Continuous Vapor-Phase Dehydrogenation of Formic Acid. ACS Catalysis, 2015, 5, 7099-7103.	5.5	45
51	Tetrahedral Tetraphosphonic Acids. New Building Blocks in Supramolecular Chemistry. Crystal Growth and Design, 2015, 15, 4925-4931.	1.4	21
52	Synthesis and Characterization of Phosphine-Functionalized Metal–Organic Frameworks Based on MOF-5 and MIL-101 Topologies. Industrial & Engineering Chemistry Research, 2014, 53, 9120-9127.	1.8	35
53	Selective Catalytic Behavior of a Phosphineâ€Tagged Metalâ€Organic Framework Organocatalyst. Chemistry - A European Journal, 2014, 20, 15467-15472.	1.7	21
54	Tuning Regioisomer Reactivity in Catalysis using Bifunctional Metal–Organic Frameworks with Mixed Linkers. ChemCatChem, 2014, 6, 1887-1891.	1.8	19

MARCO RANOCCHIARI

#	Article	IF	CITATIONS
55	Au ^I Catalysis on a Coordination Polymer: A Solid Porous Ligand with Free Phosphine Sites. ChemCatChem, 2013, 5, 692-696.	1.8	43
56	Fine tuning of gold electronic structure by IRMOF post-synthetic modification. RSC Advances, 2013, 3, 12043.	1.7	12
57	Highly Enantioselective Ruthenium/PNNP-Catalyzed Imine Aziridination: Evidence of Carbene Transfer from a Diazoester Complex. Organometallics, 2013, 32, 4690-4701.	1.1	37
58	"Click―on MOFs: A Versatile Tool for the Multimodal Derivatization of N3-Decorated Metal Organic Frameworks. Chemistry of Materials, 2013, 25, 2297-2308.	3.2	53
59	Synthesis and Reactivity of Zn–Biphenyl Metal–Organic Frameworks, Introducing a Diphenylphosphino Functional Group. Chimia, 2013, 67, 397-402.	0.3	9
60	Catalytic Conversion of Methane to Methanol Using Cu-Zeolites. Chimia, 2012, 66, 668.	0.3	21
61	Synthesis of Water-Soluble Phosphine Oxides by Pd/C-Catalyzed P–C Coupling in Water. Organic Letters, 2012, 14, 2188-2190.	2.4	86
62	Catalytic conversion of methane to methanol over Cu–mordenite. Chemical Communications, 2012, 48, 404-406.	2.2	187
63	Single-atom active sites on metal-organic frameworks. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2012, 468, 1985-1999.	1.0	48
64	Fast and high yield post-synthetic modification of metal–organic frameworks by vapor diffusion. Chemical Communications, 2012, 48, 1904.	2.2	66
65	Aqua and Diethyl Ether PNNP Complexes of Ruthenium(II): Structure and Solution Behavior. Organometallics, 2011, 30, 3596-3602.	1.1	8
66	Catalysis by metal–organic frameworks: fundamentals and opportunities. Physical Chemistry Chemical Physics, 2011, 13, 6388.	1.3	365
67	Synthesis and characterization of new tetra-substituted porphyrins with exo-donor carboxylic groups as building blocks for supramolecular architectures: Catalytic and structural studies of their metalated derivatives. Journal of Porphyrins and Phthalocyanines, 2010, 14, 804-814.	0.4	6
68	PNNP Macrocycles: A New Class of Ligands for Asymmetric Catalysis. Organometallics, 2009, 28, 1286-1288.	1.1	33
69	Ru/PNNP-Catalyzed Asymmetric Imine Aziridination by Diazo Ester Activation. Organometallics, 2009, 28, 3611-3613.	1.1	33

5