RÃ©mi Monasson

List of Publications by Year

 in descending orderSource: https:/|exaly.com/author-pdf/4530399/publications.pdf
Version: 2024-02-01

\#	Article	IF	Citations
1	Neoantigen quality predicts immunoediting in survivors of pancreatic cancer. Nature, 2022, 606, 389-395.	27.8	80
2	RBM-MHC: A Semi-Supervised Machine-Learning Method for Sample-Specific Prediction of Antigen Presentation by HLA-I Alleles. Cell Systems, 2021, 12, 195-202.e9.	6.2	26
3	Low-Dimensional Manifolds Support Multiplexed Integrations in Recurrent Neural Networks. Neural Computation, 2021, 33, 1063-1112.	2.2	1
4	The Heterogeneous Landscape and Early Evolution of Pathogen-Associated CpG Dinucleotides in SARS-CoV-2. Molecular Biology and Evolution, 2021, 38, 2428-2445.	8.9	15
5	Parameters and determinants of responses to selection in antibody libraries. PLoS Computational Biology, 2021, 17, e1008751.	3.2	5
6	Survival probability and size of lineages in antibody affinity maturation. Physical Review E, 2021, 103, 052413.	2.1	0
7	Improving sequence-based modeling of protein families using secondary-structure quality assessment. Bioinformatics, 2021, 37, 4083-4090.	4.1	6
8	Probing T-cell response by sequence-based probabilistic modeling. PLoS Computational Biology, 2021, 17, e1009297.	3.2	9
9	Barriers and dynamical paths in alternating Gibbs sampling of restricted Boltzmann machines. Physical Review E, 2021, 104, 034109.	2.1	11
10	An evolution-based model for designing chorismate mutase enzymes. Science, 2020, 369, 440-445.	12.6	195
11	Inference of compressed Potts graphical models. Physical Review E, 2020, 101, 012309.	2.1	14
12	$\hat{a} €^{\sim}$ Place-cellâ $€^{T M}$ emergence and learning of invariant data with restricted Boltzmann machines: breaking and dynamical restoration of continuous symmetries in the weight space. Journal of Physics A: Mathematical and Theoretical, 2020, 53, 174002.	2.1	9
13	Capacity-Resolution Trade-Off in the Optimal Learning of Multiple Low-Dimensional Manifolds by Attractor Neural Networks. Physical Review Letters, 2020, 124, 048302.	7.8	13
14	Quantitative modeling of the effect of antigen dosage on B-cell affinity distributions in maturating germinal centers. ELife, 2020, 9, .	6.0	23
15	Spectrum of multispace Euclidean random matrices. Physical Review E, 2020, 101, 052133.	2.1	1
16	Learning Compositional Representations of Interacting Systems with Restricted Boltzmann Machines: Comparative Study of Lattice Proteins. Neural Computation, 2019, 31, 1671-1717.	2.2	20
17	Can Grid Cell Ensembles Represent Multiple Spaces?. Neural Computation, 2019, 31, 2324-2347.	2.2	12

6.0

89

Innovation Rather than Improvement: A Solvable High-Dimensional Model Highlights the Limitations of Scalar Fitness. Journal of Statistical Physics, 2018, 172, 74-104.
1.2

Inverse statistical physics of protein sequences: a key issues review. Reports on Progress in Physics,
$21 \quad \begin{aligned} & \text { Inverse statistical ph } \\ & 2018,81,032601 .\end{aligned}$
20.1

178

Integration and multiplexing of positional and contextual information by the hippocampal network.
PLoS Computational Biology, 2018, 14, e1006320.

Functional connectivity models for decoding of spatial representations from hippocampal CA1 recordings. Journal of Computational Neuroscience, 2017, 43, 17-33.
1.0

Functional networks from inverse modeling of neural population activity. Current Opinion in Systems Biology, 2017, 3, 103-110.
2.6

18

25 Sensorimotor computation underlying phototaxis in zebrafish. Nature Communications, 2017, 8, 651.
12.8

93

Functional coupling networks inferred from prefrontal cortex activity show experience-related effective plasticity. Network Neuroscience, 2017, 1, 275-301.

27 Benchmarking Inverse Statistical Approaches for Protein Structure and Design with Exactly Solvable
Models. PLoS Computational Biology, 2016, 12, e1004889.

Direct coevolutionary couplings reflect biophysical residue interactions in proteins. Journal of Chemical Physics, 2016, 145, 174102.
3.0

22

29 On the Entropy of Protein Families. Journal of Statistical Physics, 2016, 162, 1267-1293.
1.2

22

30 Inference of principal components of noisy correlation matrices with prior information. , 2016, , .
o
Direct-Coupling Analysis of nucleotide coevolution facilitates RNA secondary and tertiary structure
prediction. Nucleic Acids Research, 2015, 43, gkv932.

32 Learning Probabilities From Random Observables in High Dimensions: The Maximum Entropy Distribution and Others. Journal of Statistical Physics, 2015, 161, 598-632.
$1.2 \quad 8$

Distinguishing the immunostimulatory properties of noncoding RNAs expressed in cancer cells.
Distinguishing the immunostimulatory properties of noncoding RNAs expressed in cancer cells.
Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 15154-15159.
7.1

7.1	69

Estimating the principal components of correlation matrices from all their empirical eigenvectors.
Europhysics Letters, 2015, 112, 50001.

Reconstruction and Identification of DNA Sequence Landscapes from Unzipping Experiments at
Equilibrium. Biophysical Journal, 2014, 106, 430-439.

39	Adaptive Cluster Expansion for the Inverse Ising Problem: Convergence, Algorithm and Tests. Journal of Statistical Physics, 2012, 147, 252-314.	1.2	60
40	Fast inference of interactions in assemblies of stochastic integrate-and-fire neurons from spike recordings. Journal of Computational Neuroscience, 2011, 31, 199-227.	1.0	18
41	Theory of Spike Timing-Based Neural Classifiers. Physical Review Letters, 2010, 105, 218102.	7.8	32
42	Neuronal couplings between retinal ganglion cells inferred by efficient inverse statistical physics methods. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 14058-14062.	7.1	160
43	Can rare SAT formulae be easily recognized? On the efficiency of message-passing algorithms fork-SAT at large clause-to-variable ratios. Journal of Physics A: Mathematical and Theoretical, 2007, 40, 867-886.	2.1	36

44 Analysis of Backtracking Procedures for Random Decision Problems. , 2005, , 139-181.

Restarts and exponential acceleration of the Davis-Putnam-Loveland-Logemann algorithm: A large
45 deviation analysis of the generalized unit clause heuristic for random 3-SAT. Annals of Mathematics and Artificial Intelligence, 2005, 43, 153-172.

Circuits in random graphs: from local trees to global loops. Journal of Statistical Mechanics: Theory
47 On Large Deviation Properties of Erdii $i^{1 / 2 s}$? Riǐi¹ $^{1 / 2}$ nyi Random Graphs. Journal of Statistical Physics, 2004, 117, 387-426.
387-426.
$1.2 \quad 48$

Heuristic average-case analysis of the backtrack resolution of random 3-satisfiability instances.
0.9

9
48 Theoretical Computer Science, 2004, 320, 345-372.
Relaxation and metastability in a local search procedure for the random satisfiability problem.2.143$49 \quad$ Physical Review E, 2003, 67, 066103.The dynamics of proving uncolourability of large random graphs: I. Symmetric colouring heuristic.Exponentially hard problems are sometimes polynomial, a large deviation analysis of search51 algorithms for the random satisfiability problem, and its application to stop-and-restart resolutions.Physical Review E, 2002, 66, 037101.Phase transitions and complexity in computer science: an overview of the statistical physics approach
to the random satisfiability problem. Physica A: Statistical Mechanics and Its Applications, 2002, 306,381-394.Statistical mechanics methods and phase transitions in optimization problems. Theoretical ComputerScience, 2001, 265, 3-67.

55	Theoretical study of collective modes in DNA at ambient temperature. Journal of Chemical Physics, 2000, 112, 10017-10033.	3.0	72
56	Statistical Mechanics of Torque Induced Denaturation of DNA. Physical Review Letters, 1999, 83, 5178-5181.	7.8	123
57	Determining computational complexity from characteristic â€ phase transitionsâ $€^{\mathrm{TM}}$. Nature, 1999, 400, 133-137.	27.8	617
58	$2+p-S A T:$ Relation of typical-case complexity to the nature of the phase transition. Random Structures and Algorithms, 1999, 15, 414-435.	1.1	62
59	$2+\mathrm{p}$-SAT: Relation of typical-case complexity to the nature of the phase transition. , 1999, $15,414$.		4
60	Tricritical points in random combinatorics: the -SAT case. Journal of Physics A, 1998, 31, 9209-9217.	1.6	74
61	Optimization problems and replica symmetry breaking in finite connectivity spin glasses. Journal of Physics A, 1998, 31, 513-529.	1.6	128

Some remarks on hierarchical replica symmetry breaking in finite-connectivity systems. The
62 Philosophical Magazine: Physics of Condensed Matter B, Statistical Mechanics, Electronic, Optical and
0.6

4 Magnetic Properties, 1998, 77, 1515-1521.

63	Statistical mechanics of the randomK-satisfiability model. Physical Review E, 1997, 56, 1357-1370.	2.1	197
64	Entropy of particle packings: An illustration on a toy model. Physica A: Statistical Mechanics and Its Applications, 1997, 236, 395-410.	2.6	39
65	Analytical and numerical study of internal representations in multilayer neural networks with binary weights. Physical Review E, 1996, 54, 717-736.	2.1	15
66	Entropy of theK-Satisfiability Problem. Physical Review Letters, 1996, 76, 3881-3885.	7.8	159
67	Structural Glass Transition and the Entropy of the Metastable States. Physical Review Letters, 1995, 75, 2847-2850.	7.8	387

