List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4530220/publications.pdf Version: 2024-02-01

ΥΛΝΟ ΡΑΝ

#	Article	IF	CITATIONS
1	Selective conversion of syngas to light olefins. Science, 2016, 351, 1065-1068.	6.0	1,063
2	Self-adaptive dual-metal-site pairs in metal-organic frameworks for selective CO2 photoreduction to CH4. Nature Catalysis, 2021, 4, 719-729.	16.1	406
3	Partially Oxidized SnS ₂ Atomic Layers Achieving Efficient Visible-Light-Driven CO ₂ Reduction. Journal of the American Chemical Society, 2017, 139, 18044-18051.	6.6	368
4	Sulfur vacancy-rich MoS2 as a catalyst for the hydrogenation of CO2 to methanol. Nature Catalysis, 2021, 4, 242-250.	16.1	308
5	Photocatalytic CO ₂ Conversion of M _{0.33} WO ₃ Directly from the Air with High Selectivity: Insight into Full Spectrum-Induced Reaction Mechanism. Journal of the American Chemical Society, 2019, 141, 5267-5274.	6.6	224
6	Photocatalytic Conversion of Waste Plastics into C ₂ Fuels under Simulated Natural Environment Conditions. Angewandte Chemie - International Edition, 2020, 59, 15497-15501.	7.2	198
7	Synergizing metal–support interactions and spatial confinement boosts dynamics of atomic nickel for hydrogenations. Nature Nanotechnology, 2021, 16, 1141-1149.	15.6	165
8	Ultrathin Conductor Enabling Efficient IR Light CO ₂ Reduction. Journal of the American Chemical Society, 2019, 141, 423-430.	6.6	146
9	Benzene decomposition by non-thermal plasma: A detailed mechanism study by synchrotron radiation photoionization mass spectrometry and theoretical calculations. Journal of Hazardous Materials, 2021, 420, 126584.	6.5	120
10	Efficient Infraredâ€Lightâ€Driven CO ₂ Reduction Over Ultrathin Metallic Niâ€doped CoS ₂ Nanosheets. Angewandte Chemie - International Edition, 2021, 60, 8705-8709.	7.2	108
11	Efficient infrared light induced CO2 reduction with nearly 100% CO selectivity enabled by metallic CoN porous atomic layers. Nano Energy, 2020, 69, 104421.	8.2	88
12	Radical Chemistry and Reaction Mechanisms of Propane Oxidative Dehydrogenation over Hexagonal Boron Nitride Catalysts. Angewandte Chemie - International Edition, 2020, 59, 8042-8046.	7.2	83
13	Gas-Phase Reaction Network of Li/MgO-Catalyzed Oxidative Coupling of Methane and Oxidative Dehydrogenation of Ethane. ACS Catalysis, 2019, 9, 2514-2520.	5.5	71
14	Online Study on the Pyrolysis of Polypropylene over the HZSM-5 Zeolite with Photoionization Time-of-Flight Mass Spectrometry. Energy & Fuels, 2015, 29, 1090-1098.	2.5	62
15	NbO x /CeO 2 -rods catalysts for oxidative dehydrogenation of propane: Nb–CeO 2 interaction and reaction mechanism. Journal of Catalysis, 2017, 348, 189-199.	3.1	59
16	Construction of a Multicomponent Molecular Model of Fugu Coal for ReaxFF-MD Pyrolysis Simulation. Energy & Fuels, 2019, 33, 2848-2858.	2.5	58
17	Pyrolysis Mechanism Study of Lignin Model Compounds by Synchrotron Vacuum Ultraviolet Photoionization Mass Spectrometry. Energy & Fuels, 2016, 30, 2204-2208.	2.5	54
18	Formation and Fate of Formaldehyde in Methanolâ€toâ€Hydrocarbon Reaction: In Situ Synchrotron Radiation Photoionization Mass Spectrometry Study. Angewandte Chemie - International Edition, 2020, 59, 4873-4878.	7.2	50

#	Article	IF	CITATIONS
19	Ambient-pressure hydrogenation of CO2 into long-chain olefins. Nature Communications, 2022, 13, 2396.	5.8	49
20	Mechanism study on the pyrolysis of the typical ether linkages in biomass. Fuel, 2019, 249, 146-153.	3.4	48
21	Imaging of Polar and Nonpolar Species Using Compact Desorption Electrospray Ionization/Postphotoionization Mass Spectrometry. Analytical Chemistry, 2019, 91, 6616-6623.	3.2	45
22	Online Study on the Catalytic Pyrolysis of Bituminous Coal over HUSY and HZSM-5 with Photoionization Time-of-Flight Mass Spectrometry. Energy & Fuels, 2016, 30, 1598-1604.	2.5	45
23	Plastics-to-syngas photocatalysed by Co–Ga2O3 nanosheets. National Science Review, 2022, 9, .	4.6	42
24	Effects of Proximity-Dependent Metal Migration on Bifunctional Composites Catalyzed Syngas to Olefins. ACS Catalysis, 2021, 11, 9729-9737.	5.5	41
25	Atomically dispersed palladium-based catalysts obtained <i>via</i> constructing a spatial structure with high performance for lean methane combustion. Journal of Materials Chemistry A, 2020, 8, 7395-7404.	5.2	40
26	Surface coupling of methyl radicals for efficient low-temperature oxidative coupling of methane. Chinese Journal of Catalysis, 2021, 42, 1117-1125.	6.9	39
27	Controllable CO ₂ conversion in high performance proton conducting solid oxide electrolysis cells and the possible mechanisms. Journal of Materials Chemistry A, 2019, 7, 4855-4864.	5.2	37
28	Co-generation of electricity and olefin via proton conducting fuel cells using (Pr0.3Sr0.7)0.9Ni0.1Ti0.9O3 catalyst layers. Applied Catalysis B: Environmental, 2020, 272, 118973.	10.8	37
29	Single-Site Catalysis of Li-MgO Catalysts for Oxidative Coupling of Methane Reaction. ACS Catalysis, 2020, 10, 15142-15148.	5.5	34
30	Online Characterization of Isomeric/Isobaric Components in the Gas Phase of Mainstream Cigarette Smoke by Tunable Synchrotron Radiation Vacuum Ultraviolet Photoionization Time-of-Flight Mass Spectrometry and Photoionization Efficiency Curve Simulation. Analytical Chemistry, 2013, 85, 11993-12001.	3.2	32
31	NH ₃ Plasma Functionalization of UiO-66-NH ₂ for Highly Enhanced Selective Fluorescence Detection of U(VI) in Water. Analytical Chemistry, 2022, 94, 10091-10100.	3.2	32
32	Studies on Photoinduced H-Atom and Electron Transfer Reactions ofo-Naphthoquinones by Laser Flash Photolysis. Journal of Physical Chemistry A, 2006, 110, 7316-7322.	1.1	31
33	Pyrolysis Study on Solid Fuels: From Conventional Analytical Methods to Synchrotron Vacuum Ultraviolet Photoionization Mass Spectrometry. Energy & Fuels, 2016, 30, 1534-1543.	2.5	31
34	Binding States of Protein–Metal Complexes in Cells. Analytical Chemistry, 2016, 88, 10860-10866.	3.2	28
35	Bifunctional zeolites-silver catalyst enabled tandem oxidation of formaldehyde at low temperatures. Nature Communications, 2022, 13, 2209.	5.8	28
36	CH ₃ [•] -Generating Capability as a Reactivity Descriptor for Metal Oxides in Oxidative Coupling of Methane. ACS Catalysis, 2021, 11, 14651-14659.	5.5	26

#	Article	IF	CITATIONS
37	Ex Situ Catalytic Pyrolysis of Algal Biomass in a Double Microfixed-Bed Reactor: Catalyst Deactivation and Its Coking Behavior. Energy & Fuels, 2020, 34, 1918-1928.	2.5	25
38	In-plane heterostructured Ag2S-In2S3 atomic layers enabling boosted CO2 photoreduction into CH4. Nano Research, 2021, 14, 4520-4527.	5.8	24
39	Catalytic pyrolysis of xylan over alkali metal salts as revealed by synchrotron vacuum ultraviolet photoionization mass spectrometry. Journal of Analytical and Applied Pyrolysis, 2018, 135, 94-100.	2.6	23
40	Quantitative phase microscopy with enhanced contrast and improved resolution through ultraâ \in oblique illumination (UOâ \in QPM). Journal of Biophotonics, 2019, 12, e201900011.	1.1	23
41	Ultrasonic nebulization extraction/low pressure photoionization mass spectrometry for direct analysis of chemicals in matrices. Analytica Chimica Acta, 2015, 891, 203-210.	2.6	22
42	Note: A novel vacuum ultraviolet light source assembly with aluminum-coated electrodes for enhancing the ionization efficiency of photoionization mass spectrometry. Review of Scientific Instruments, 2014, 85, 046110.	0.6	21
43	Experimental and Theoretical Investigation of the Pyrolysis of Furfural. Journal of Physical Chemistry A, 2019, 123, 103-110.	1.1	21
44	Working-in-tandem mechanism of multi-dopants in enhancing electrocatalytic nitrogen reduction reaction performance of carbon-based materials. Nano Research, 2021, 14, 3234-3239.	5.8	20
45	<i>Operando</i> XAS Study of Pt-Doped CeO ₂ for the Nonoxidative Conversion of Methane. ACS Catalysis, 2022, 12, 3897-3908.	5.5	20
46	Multiple Promotional Effects of Vanadium Oxide on Boron Nitride for Oxidative Dehydrogenation of Propane. Jacs Au, 2022, 2, 1096-1104.	3.6	20
47	Comparative study of different algae pyrolysis using photoionization mass spectrometry and gas chromatography/mass spectrometry. Journal of Analytical and Applied Pyrolysis, 2021, 155, 105068.	2.6	19
48	Recent Advances of Ambient Mass Spectrometry Imaging and Its Applications in Lipid and Metabolite Analysis. Metabolites, 2021, 11, 780.	1.3	19
49	Novel in-situ MgO nano-layer decorated carbon-tolerant anode for solid oxide fuel cells. International Journal of Hydrogen Energy, 2020, 45, 11791-11801.	3.8	18
50	Photocatalytic Conversion of Waste Plastics into C ₂ Fuels under Simulated Natural Environment Conditions. Angewandte Chemie, 2020, 132, 15627-15631.	1.6	17
51	Simvastatin impairs hippocampal synaptic plasticity and cognitive function in mice. Molecular Brain, 2021, 14, 41.	1.3	16
52	Real-time monitoring the carbonization and activation process of activated carbon prepared from Chinese parasol via zinc chloride activation. Journal of Analytical and Applied Pyrolysis, 2021, 155, 105089.	2.6	16
53	Extractive Atmospheric Pressure Photoionization (EAPPI) Mass Spectrometry: Rapid Analysis of Chemicals in Complex Matrices. Journal of the American Society for Mass Spectrometry, 2016, 27, 1597-1605.	1.2	14
54	Ultrafast Microelectrophoresis: Behind Direct Mass Spectrometry Measurements of Proteins and Metabolites in Living Cell/Cells. Analytical Chemistry, 2019, 91, 10441-10447.	3.2	14

#	Article	IF	CITATIONS
55	Cholesterol was identified as a biomarker in human melanocytic nevi using DESI and DESI/PI mass spectrometry imaging. Talanta, 2021, 231, 122380.	2.9	14
56	Improving quantification of hydrogen peroxide by synchrotron vacuum ultraviolet photoionization mass spectrometry. Combustion and Flame, 2022, 242, 112214.	2.8	14
57	Direct and rapid analysis of trace levels steroids in water by thermal desorption atmospheric pressure photoionization mass spectrometry. Analytical Methods, 2019, 11, 1304-1311.	1.3	13
58	Infiltrated Ni _{0.08} Co _{0.02} CeO _{2–<i>x</i>} @Ni _{0.8} Co _{0.2} Catalysts for a Finger-Like Anode in Direct Methane-Fueled Solid Oxide Fuel Cells. ACS Applied Materials & Interfaces, 2021, 13, 4943-4954.	4.0	13
59	Identification of Isobars and Isomers in Cigarette Sidestream Smoke in Real Time by Synchrotron Radiation Photoionization Mass Spectrometry and Multiple Linear Regression. Analytical Chemistry, 2021, 93, 5718-5726.	3.2	13
60	Exploring the reaction chemistry of biomass upgrading over HZSM-5 catalyst through model compounds. Fuel, 2022, 312, 122874.	3.4	13
61	Probing reaction pathways for H2O-mediated HCHO photooxidation at room temperature. Nano Research, 2021, 14, 1471-1478.	5.8	12
62	Atmospheric CO2 capture and photofixation to near-unity CO by Ti3+-Vo-Ti3+ sites confined in TiO2 ultrathin layers. Science China Chemistry, 2021, 64, 953-958.	4.2	12
63	Understanding the Homogeneous Reactions of Primary Tar from Biomass Pyrolysis by Means of Photoionization Mass Spectrometry. Energy & Fuels, 2020, 34, 12678-12687.	2.5	12
64	Radical Chemistry and Reaction Mechanisms of Propane Oxidative Dehydrogenation over Hexagonal Boron Nitride Catalysts. Angewandte Chemie, 2020, 132, 8119-8123.	1.6	11
65	Efficient Infraredâ€Lightâ€Driven CO ₂ Reduction Over Ultrathin Metallic Niâ€doped CoS ₂ Nanosheets. Angewandte Chemie, 2021, 133, 8787-8791.	1.6	11
66	Study on Gas Phase Components in Mainstream Cigarette Smoke by Synchrotron Radiation Photoionization Mass Spectrometry. Chinese Journal of Analytical Chemistry, 2012, 40, 1048-1052.	0.9	10
67	Influence of Thermal Treatment of HUSY on Catalytic Pyrolysis of Polypropylene: An Online Photoionization Mass Spectrometric Study. Energy & Fuels, 2016, 30, 5122-5129.	2.5	10
68	Fast and comprehensive characterization of chemical ingredients in traditional Chinese herbal medicines by extractive atmospheric pressure photoionization (EAPPI) mass spectrometry. Rapid Communications in Mass Spectrometry, 2017, 31, 1491-1498.	0.7	10
69	Upgrading of furans from in situ catalytic fast pyrolysis of xylan by reduced graphene oxide supported Pt nanoparticles. Renewable Energy, 2020, 152, 94-101.	4.3	9
70	Co ³⁺ –O Bond Elongation Unlocks Co ₃ O ₄ for Methane Activation under Ambient Conditions. ACS Catalysis, 2022, 12, 7037-7045.	5.5	9
71	Capture of Electrochemically Generated Fleeting Carbazole Radical Cations and Elucidation of Carbazole Dimerization Mechanism by Mass Spectrometry. Analytical Chemistry, 2020, 92, 15291-15296.	3.2	8
72	Cholesterol regulates cannabinoid analgesia through glycine receptors. Neuropharmacology, 2020, 177, 108242.	2.0	8

#	Article	IF	CITATIONS
73	Online Monitoring the Key Intermediates and Volatile Compounds Evolved from Green Tea Roasting by Synchrotron Radiation Photoionization Mass Spectrometry. Journal of the American Society for Mass Spectrometry, 2021, 32, 1402-1411.	1.2	7
74	On-Line Photoionization Mass Spectrometric Study on Behavior of Ammonia Poisoning on H-Form Ultra Stable Y Zeolite for Catalytic Pyrolysis of Polypropylene. Chinese Journal of Chemical Physics, 2016, 29, 681-686.	0.6	6
75	Effects of Solvent and Ion Source Pressure on the Analysis of Anabolic Steroids by Low Pressure Photoionization Mass Spectrometry. Journal of the American Society for Mass Spectrometry, 2017, 28, 724-728.	1.2	6
76	Atmospheric-Pressure Pyrolysis Study of Chlorobenzene Using Synchrotron Radiation Photoionization Mass Spectrometry. Journal of Physical Chemistry A, 2021, 125, 1949-1957.	1.1	5
77	Reaction mechanism of toluene decomposition in non-thermal plasma: How does it compare with benzene?. Fundamental Research, 2022, , .	1.6	5
78	Chargeâ€dependent modulation of specific and nonspecific proteinâ€metal ion interactions in nanoelectrospray ionization mass spectrometry. Rapid Communications in Mass Spectrometry, 2019, 33, 1502-1511.	0.7	4
79	A high-pressure reactor coupled to synchrotron radiation photoionization mass spectrometry. Review of Scientific Instruments, 2020, 91, 093102.	0.6	4
80	Effects of dopants in the imaging of mouse brain by desorption electrospray ionization/postâ€photoionization mass spectrometry. Journal of Mass Spectrometry, 2022, 57, e4813.	0.7	3
81	Experimental and kinetic study on flash pyrolysis of biomass via on-line photoionization mass spectrometry. Applications in Energy and Combustion Science, 2022, 9, 100057.	0.9	3
82	Formation and Fate of Formaldehyde in Methanolâ€ŧoâ€Hydrocarbon Reaction: In Situ Synchrotron Radiation Photoionization Mass Spectrometry Study. Angewandte Chemie, 2020, 132, 4903-4908.	1.6	2
83	Imaging of Polar and Nonpolar Lipids Using Desorption Electrospray Ionization/Post-photoionization Mass Spectrometry. Methods in Molecular Biology, 2021, 2306, 285-298.	0.4	2
84	Rapid Quantification of Endogenous Steroids in Human Serum Using Leidenfrost Effect-Assisted Thermal Desorption Atmospheric Pressure Photoionization Orbitrap Mass Spectrometry. Journal of the American Society for Mass Spectrometry, 2022, 33, 1250-1259.	1.2	2
85	Direct SVUV-PIMS Identification of Unstable Oxygenated Intermediates in Ethanol to Butadiene Reaction. Catalysis Science and Technology, 0, , .	2.1	1
86	Titelbild: Radical Chemistry and Reaction Mechanisms of Propane Oxidative Dehydrogenation over Hexagonal Boron Nitride Catalysts (Angew. Chem. 21/2020). Angewandte Chemie, 2020, 132, 8045-8045.	1.6	0