Zhong-Wen Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4530129/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Elucidating the Support-Size Effect on the Catalytic Stability of CrOx/Silicalite-1 for Oxidative Dehydrogenation of Propane with CO2. Catalysis Letters, 2023, 153, 790-804.	2.6	5
2	Encapsulation of ultra-small Cu–Fe into ZSM-5 zeolites for NH3-SCR with broad reaction-temperature ranges. Microporous and Mesoporous Materials, 2022, 331, 111675.	4.4	21
3	CeO2-Promoted PtSn/SiO2 as a High-Performance Catalyst for the Oxidative Dehydrogenation of Propane with Carbon Dioxide. Nanomaterials, 2022, 12, 417.	4.1	6
4	Photoprogrammable Moisture-Responsive Actuation of a Shape Memory Polymer Film. ACS Applied Materials & Interfaces, 2022, 14, 10836-10843.	8.0	29
5	Molecular-level investigation on supported CrOx catalyst for oxidative dehydrogenation of propane with carbon dioxide. Journal of Catalysis, 2022, 409, 87-97.	6.2	15
6	Sequential Cobalt/Rhodium atalyzed Tandem Cyclization of Aromatic Aldehydes with Acrylates for Preparing 3‧ubstituted Phthalides in Oxygen Atmosphere and Neat Water. Asian Journal of Organic Chemistry, 2022, 11, .	2.7	1
7	Ultrafast crystallization of mesoporous Sn-MFI single crystals achieved by addition of the cationic polyelectrolyte in starting gels. Microporous and Mesoporous Materials, 2022, 337, 111922.	4.4	3
8	Light-Guided Growth of Gradient Hydrogels with Programmable Geometries and Thermally Responsive Actuations. ACS Applied Materials & Interfaces, 2022, 14, 29188-29196.	8.0	5
9	Rubber-like composites with tunable thermal- and photo-responsive shape memory properties. Chemical Engineering Journal, 2022, 447, 137534.	12.7	14
10	Understanding the Role of Fe Doping in Tuning the Size and Dispersion of GaN Nanocrystallites for CO ₂ -Assisted Oxidative Dehydrogenation of Propane. ACS Catalysis, 2022, 12, 8527-8543.	11.2	10
11	Controlled direct synthesis of single- to multiple-layer MWW zeolite. National Science Review, 2021, 8, nwaa236.	9.5	13
12	Gallium nitride catalyzed the direct hydrogenation of carbon dioxide to dimethyl ether as primary product. Nature Communications, 2021, 12, 2305.	12.8	45
13	Kinetics behavior of Co/Ni-ordered mesoporous alumina for the CO methanation. Chemical Engineering Science: X, 2021, 10, 100094.	1.5	0
14	Size-Controlled Synthesis of Pd Nanocatalysts on Defect-Engineered CeO ₂ for CO ₂ Hydrogenation. ACS Applied Materials & Interfaces, 2021, 13, 24957-24965.	8.0	33
15	Microfluidic-assisted assembly of fluorescent self-healing gel particles toward dual-signal sensors. Journal of Materials Science, 2021, 56, 14832-14843.	3.7	4
16	Programmable Humidity-Responsive Actuation of Polymer Films Enabled by Combining Shape Memory Property and Surface-Tunable Hygroscopicity. ACS Applied Materials & Interfaces, 2021, 13, 38773-38782.	8.0	25
17	Active and selective nature of supported CrOx for the oxidative dehydrogenation of propane with carbon dioxide. Applied Catalysis B: Environmental, 2021, 297, 120400.	20.2	43
18	Tailoring the surface structure of iron compounds to optimize the selectivity of 3-nitrostyrene hydrogenation reaction over Pt catalyst. Chinese Chemical Letters, 2021, , .	9.0	6

#	Article	IF	CITATIONS
19	Highly active K-promoted Cu/β-Mo2C catalysts for reverse water gas shift reaction: Effect of potassium. Molecular Catalysis, 2021, 516, 111954.	2.0	10
20	Photo-Dissociable Fe ³⁺ -Carboxylate Coordination: A General Approach toward Hydrogels with Shape Programming and Active Morphing Functionalities. ACS Applied Materials & Interfaces, 2021, 13, 59310-59319.	8.0	15
21	Flame-spray-pyrolysis amorphous alumina-silica for tailoring the product distribution of Fischer-Tropsch synthesis. Catalysis Today, 2020, 339, 40-47.	4.4	6
22	Photoresponsive Shape Memory Hydrogels for Complex Deformation and Solvent-Driven Actuation. ACS Applied Materials & amp; Interfaces, 2020, 12, 6407-6418.	8.0	46
23	Smart Bilayer Polyacrylamide/DNA Hybrid Hydrogel Film Actuators Exhibiting Programmable Responsive and Reversible Macroscopic Shape Deformations. Small, 2020, 16, e1906998.	10.0	43
24	Controllable Tandem [3+2] Cyclization of Aromatic Aldehydes with Maleimides: Rhodium(III)-Catalyzed Divergent Synthesis of Indane-Fused Pyrrolidine-2,5-dione. Organic Letters, 2020, 22, 8808-8813.	4.6	16
25	Finely Controlled Platinum Nanoparticles over ZnO Nanorods for Selective Hydrogenation of 3â€Nitrostyrene to 3â€Vinylaniline. Chemistry - A European Journal, 2020, 26, 8990-8996.	3.3	7
26	Balancing free and confined metallic Ni for an active and stable catalyst—A case study of CO methanation over Ni/Ni–Al2O3. Journal of Energy Chemistry, 2020, 50, 73-84.	12.9	19
27	Hyperbranched polymer micelles with triple-stimuli backbone-breakable iminoboronate ester linkages. Chinese Chemical Letters, 2020, 31, 1822-1826.	9.0	17
28	Acid-resistant ROS-responsive hyperbranched polythioether micelles for ulcerative colitis therapy. Chinese Chemical Letters, 2020, 31, 3102-3106.	9.0	34
29	Facile synthesis of SiO2 supported GaN as an active catalyst for CO2 enhanced dehydrogenation of propane. Journal of CO2 Utilization, 2020, 38, 306-313.	6.8	28
30	Aldehyde as a Traceless Directing Group for Regioselective C–H Alkylation Catalyzed by Rhodium(III) in Air. Organic Letters, 2020, 22, 1259-1264.	4.6	16
31	The Active Nature of Crystal MoS ₂ for Converting Sulfur ontaining Syngas. ChemCatChem, 2019, 11, 1112-1122.	3.7	5
32	Defect-rich Ce1-xZrxO2 solid solutions for oxidative dehydrogenation of ethylbenzene with CO2. Catalysis Today, 2019, 324, 39-48.	4.4	29
33	Insights into the long-term stability of the magnesia modified H-ZSM-5 as an efficient solid acid for steam reforming of dimethyl ether. International Journal of Hydrogen Energy, 2019, 44, 21481-21494.	7.1	13
34	Controlled 3D Shape Transformation Activated by Room Temperature Stretching and Release of a Flat Polymer Sheet. ACS Applied Materials & Interfaces, 2019, 11, 30308-30316.	8.0	8
35	Two-step hydrothermally synthesized Ce1-xZrxO2 for oxidative dehydrogenation of ethylbenzene with carbon dioxide. Journal of CO2 Utilization, 2019, 34, 99-107.	6.8	12
36	Understanding the active-site nature of vanadia-based catalysts for oxidative dehydrogenation of ethylbenzene with CO2 via atomic layer deposited VOx on Î ³ -Al2O3. Journal of Catalysis, 2019, 380, 195-203.	6.2	23

#	Article	IF	CITATIONS
37	Tailoring the surface structures of iron oxide nanorods to support Au nanoparticles for CO oxidation. Chinese Journal of Catalysis, 2019, 40, 1884-1894.	14.0	15
38	Backboneâ€Hydrolyzable Poly(oligo(ethylene glycol) bis(glycidyl ether)―alt â€ketoglutaric acid) with Tunable LCST Behavior. Macromolecular Chemistry and Physics, 2019, 220, 1900004.	2.2	1
39	Insights into the Oxidative Dehydrogenation of Ethylbenzene with CO2 Catalyzed by the Ordered Mesoporous V2O5–Ce0.5Zr0.5O2–Al2O3. Industrial & Engineering Chemistry Research, 2019, 58, 21372-21381.	3.7	5
40	Acid activated montmorillonite for gas-phase catalytic dehydration of monoethanolamine. Applied Clay Science, 2019, 168, 116-124.	5.2	15
41	Cobalt nanoparticles confined in carbon matrix for probing the size dependence in Fischer-Tropsch synthesis. Journal of Catalysis, 2019, 369, 143-156.	6.2	72
42	Divergent Syntheses of Spiroindanones and 2-Substituted 1-Indanones by Ruthenium-Catalyzed Tandem Coupling and Cyclization of Aromatic Acids with α,β-Unsaturated Ketones. Journal of Organic Chemistry, 2019, 84, 1348-1362.	3.2	22
43	Controllable and scalable synthesis of hollow-structured porous aromatic polymer for selective adsorption and separation of HMF from reaction mixture of fructose dehydration. Chemical Engineering Journal, 2019, 358, 467-479.	12.7	29
44	Alpha-amino acid assisted synthesis of ordered mesoporous alumina with tunable structural properties. Materials Letters, 2018, 223, 17-20.	2.6	5
45	Metal-support interactions regulated via carbon coating – A case study of Co/SiO2 for Fischer-Tropsch synthesis. Fuel, 2018, 226, 213-220.	6.4	27
46	Carboxylâ€Directed Conjugate Addition of Câ^'H Bonds to <i>α</i> , <i>β</i> â€Unsaturated Ketones in Air and Water. Advanced Synthesis and Catalysis, 2018, 360, 1358-1363.	4.3	38
47	Direct Synthesis of the Reduced Co–C/SiO ₂ As an Efficient Catalyst for Fischer–Tropsch Synthesis. Industrial & Engineering Chemistry Research, 2018, 57, 1137-1145.	3.7	7

48

#	Article	IF	CITATIONS
55	Nanoflake-assembled Al2O3-supported CeO2-ZrO2 as an efficient catalyst for oxidative dehydrogenation of ethylbenzene with CO2. Applied Surface Science, 2017, 398, 1-8.	6.1	22
56	Copperâ€Catalyzed Coupling of Indoles with Dimethylformamide as a Methylenating Reagent. Advanced Synthesis and Catalysis, 2016, 358, 539-542.	4.3	44
57	The delaminating and pillaring of MCM-22 for Fischer–Tropsch synthesis over cobalt. Catalysis Today, 2016, 274, 109-115.	4.4	21
58	Potassium promotion effects in carbon nanotube supported molybdenum sulfide catalysts for carbon monoxide hydrogenation. Catalysis Today, 2016, 261, 137-145.	4.4	16
59	Effective activation of montmorillonite and its application for Fischer-Tropsch synthesis over ruthenium promoted cobalt. Fuel Processing Technology, 2015, 136, 87-95.	7.2	26
60	Insights into CeO2-modified Ni–Mg–Al oxides for pressurized carbon dioxide reforming of methane. Chemical Engineering Journal, 2015, 259, 581-593.	12.7	50
61	Cobalt-supported carbon and alumina co-pillared montmorillonite for Fischer–Tropsch synthesis. Fuel Processing Technology, 2015, 138, 116-124.	7.2	17
62	Key Factors on the Pressurized Tri-Reforming of Methane over Ni-SiO2. ACS Symposium Series, 2015, , 155-169.	0.5	9
63	Highly Active and Stable Ni–SiO ₂ Prepared by a Complex-Decomposition Method for Pressurized Carbon Dioxide Reforming of Methane. Industrial & Engineering Chemistry Research, 2014, 53, 19077-19086.	3.7	25
64	Removal of cobalt(II) ion from aqueous solution by chitosan–montmorillonite. Journal of Environmental Sciences, 2014, 26, 1879-1884.	6.1	81
65	Insights into the vanadia catalyzed oxidative dehydrogenation of isobutane with CO2. Chinese Journal of Catalysis, 2014, 35, 1329-1336.	14.0	13
66	High-performance Ni–SiO2 for pressurized carbon dioxide reforming of methane. International Journal of Hydrogen Energy, 2014, 39, 11592-11605.	7.1	29
67	Cobalt Supported on Alkaline-Activated Montmorillonite as an Efficient Catalyst for Fischer–Tropsch Synthesis. Energy & Fuels, 2013, 27, 6362-6371.	5.1	22
68	Insights into the unexpected formation of hexamethylbenzene during steam reforming of dimethyl ether over zeolite-based bifunctional catalysts. Catalysis Today, 2013, 210, 75-80.	4.4	2
69	Magnesia modified H-ZSM-5 as an efficient acidic catalyst for steam reforming of dimethyl ether. Applied Catalysis B: Environmental, 2013, 134-135, 381-388.	20.2	52
70	Fischer-Tropsch synthesis over cobalt/montmorillonite promoted with different interlayer cations. Fuel, 2013, 109, 33-42.	6.4	19
71	Ultraclean Fuels Production and Utilization for the Twenty-First Century: Advances toward Sustainable Transportation Fuels. Energy & amp; Fuels, 2013, 27, 6335-6338.	5.1	43
72	Alumina Grafted to SBA-15 in Supercritical CO ₂ as a Support of Cobalt for Fischer–Tropsch Synthesis. Energy & Fuels, 2012, 26, 6567-6575.	5.1	23

#	Article	IF	CITATIONS
73	Porous Montmorillonite Heterostructures Directed by a Single Alkyl Ammonium Template for Controlling the Product Distribution of Fischer–Tropsch Synthesis over Cobalt. Chemistry of Materials, 2012, 24, 972-974.	6.7	38
74	Direct Asymmetric Aldol Reactions Catalyzed by L-Proline/PEG/SiO ₂ Composite Catalyst. Synthetic Communications, 2012, 42, 1559-1566.	2.1	5
75	Hydrogen production for fuel cells via steam reforming of dimethyl ether over commercial Cu/ZnO/Al2O3 and zeolite. Chemical Engineering Journal, 2012, 187, 299-305.	12.7	33
76	Fischer–Tropsch synthesis over Co/montmorillonite—Insights into the role of interlayer exchangeable cations. Applied Catalysis A: General, 2011, 405, 45-54.	4.3	19
77	V ₂ O ₅ /Ce _{0.6} Zr _{0.4} O ₂ â€Al ₂ O <sub as an Efficient Catalyst for the Oxidative Dehydrogenation of Ethylbenzene with Carbon Dioxide. ChemSusChem, 2011, 4, 341-345.</sub 	>3 6.8	38
78	Synthesis of mesoporous MCM-48 using fumed silica and mixed surfactants. Microporous and Mesoporous Materials, 2010, 131, 224-229.	4.4	37
79	The dehydrogenation of ethylbenzene with CO2 over V2O5/CexZr1â^xO2 prepared with different methods. Journal of Molecular Catalysis A, 2010, 329, 64-70.	4.8	19
80	Co/Pillared Clay Bifunctional Catalyst for Controlling the Product Distribution of Fischerâ^'Tropsch Synthesis. Industrial & Engineering Chemistry Research, 2010, 49, 9004-9011.	3.7	20
81	DMC Formation over Ce0.5Zr0.5O2 Prepared by Complex-decomposition Method. Catalysis Letters, 2009, 129, 428-436.	2.6	40
82	The Contact State Related Phenomena of Hybrid Catalysts for the Modified Fischer-Tropsch Synthesis. Catalysis Letters, 2009, 131, 388-392.	2.6	7
83	Hydrogen production via partial oxidation and reforming of dimethyl ether. Catalysis Today, 2009, 146, 50-56.	4.4	29
84	lso-paraffins synthesis from modified Fischer–Tropsch reaction—Insights into Pd/beta and Pt/beta catalysts. Catalysis Today, 2005, 104, 41-47.	4.4	44
85	Formation of Isoparaffins through Pd∫î² Zeolite Application in Fischerâ^Tropsch Synthesis. Energy & Fuels, 2005, 19, 1790-1794.	5.1	18
86	Insights into a Multifunctional Hybrid Catalyst Composed of Co/SiO2 and Pd/Beta for Isoparaffin Production from Syngas. Industrial & Engineering Chemistry Research, 2005, 44, 7329-7336.	3.7	20
87	Selective production of iso-paraffins from syngas over Co/SiO2 and Pd/beta hybrid catalysts. Catalysis Communications, 2005, 6, 503-506.	3.3	27
88	Oxidative Dehydrogenation of Propane with Carbon Dioxide Catalyzed by ZnxZr1–xO2–x Solid Solutions. Industrial & Engineering Chemistry Research, 0, , .	3.7	11