Zhong-Wen Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4530129/publications.pdf

Version: 2024-02-01

218677 345221 1,911 88 26 citations h-index papers

g-index 88 88 88 2048 docs citations times ranked citing authors all docs

36

#	Article	IF	CITATIONS
1	Removal of cobalt(II) ion from aqueous solution by chitosan–montmorillonite. Journal of Environmental Sciences, 2014, 26, 1879-1884.	6.1	81
2	Cobalt nanoparticles confined in carbon matrix for probing the size dependence in Fischer-Tropsch synthesis. Journal of Catalysis, 2019, 369, 143-156.	6.2	72
3	Magnesia modified H-ZSM-5 as an efficient acidic catalyst for steam reforming of dimethyl ether. Applied Catalysis B: Environmental, 2013, 134-135, 381-388.	20.2	52
4	Insights into CeO2-modified Ni–Mg–Al oxides for pressurized carbon dioxide reforming of methane. Chemical Engineering Journal, 2015, 259, 581-593.	12.7	50
5	Photoresponsive Shape Memory Hydrogels for Complex Deformation and Solvent-Driven Actuation. ACS Applied Materials & Deformation and Solvent-Driven Actuation.	8.0	46
6	Gallium nitride catalyzed the direct hydrogenation of carbon dioxide to dimethyl ether as primary product. Nature Communications, 2021, 12, 2305.	12.8	45
7	Iso-paraffins synthesis from modified Fischer–Tropsch reaction—Insights into Pd/beta and Pt/beta catalysts. Catalysis Today, 2005, 104, 41-47.	4.4	44
8	Copper atalyzed Coupling of Indoles with Dimethylformamide as a Methylenating Reagent. Advanced Synthesis and Catalysis, 2016, 358, 539-542.	4.3	44
9	Ultraclean Fuels Production and Utilization for the Twenty-First Century: Advances toward Sustainable Transportation Fuels. Energy & Energy & 2013, 27, 6335-6338.	5.1	43
10	Smart Bilayer Polyacrylamide/DNA Hybrid Hydrogel Film Actuators Exhibiting Programmable Responsive and Reversible Macroscopic Shape Deformations. Small, 2020, 16, e1906998.	10.0	43
11	Active and selective nature of supported CrOx for the oxidative dehydrogenation of propane with carbon dioxide. Applied Catalysis B: Environmental, 2021, 297, 120400.	20.2	43
12	DMC Formation over Ce0.5Zr0.5O2 Prepared by Complex-decomposition Method. Catalysis Letters, 2009, 129, 428-436.	2.6	40
13	V ₂ O ₅ /Ce _{0.6} Zr _{0.4} O ₂ â€Al ₂ O _{3 as an Efficient Catalyst for the Oxidative Dehydrogenation of Ethylbenzene with Carbon Dioxide. ChemSusChem, 2011, 4, 341-345.}	3	38
14	Porous Montmorillonite Heterostructures Directed by a Single Alkyl Ammonium Template for Controlling the Product Distribution of Fischer–Tropsch Synthesis over Cobalt. Chemistry of Materials, 2012, 24, 972-974.	6.7	38
15	Carboxylâ€Directed Conjugate Addition of Câ^'H Bonds to <i>α</i> , <i>β</i> â€Unsaturated Ketones in Air and Water. Advanced Synthesis and Catalysis, 2018, 360, 1358-1363.	4.3	38
16	Synthesis of mesoporous MCM-48 using fumed silica and mixed surfactants. Microporous and Mesoporous Materials, 2010, 131, 224-229.	4.4	37
17	Acid-resistant ROS-responsive hyperbranched polythioether micelles for ulcerative colitis therapy. Chinese Chemical Letters, 2020, 31, 3102-3106.	9.0	34
18	Hydrogen production for fuel cells via steam reforming of dimethyl ether over commercial Cu/ZnO/Al2O3 and zeolite. Chemical Engineering Journal, 2012, 187, 299-305.	12.7	33

#	Article	IF	CITATIONS
19	Size-Controlled Synthesis of Pd Nanocatalysts on Defect-Engineered CeO ₂ for CO ₂ Hydrogenation. ACS Applied Materials & Interfaces, 2021, 13, 24957-24965.	8.0	33
20	A facile sol-gel synthesis of highly active nano \hat{l}_{\pm} -aluminum fluoride catalyst for dehydrofluorination of hydrofluorocarbons. Applied Catalysis B: Environmental, 2017, 206, 65-73.	20.2	31
21	2D-to-3D Shape Transformation of Room-Temperature-Programmable Shape-Memory Polymers through Selective Suppression of Strain Relaxation. ACS Applied Materials & Samp; Interfaces, 2018, 10, 40189-40197.	8.0	30
22	Hydrogen production via partial oxidation and reforming of dimethyl ether. Catalysis Today, 2009, 146, 50-56.	4.4	29
23	High-performance Ni–SiO2 for pressurized carbon dioxide reforming of methane. International Journal of Hydrogen Energy, 2014, 39, 11592-11605.	7.1	29
24	Defect-rich Ce1-xZrxO2 solid solutions for oxidative dehydrogenation of ethylbenzene with CO2. Catalysis Today, 2019, 324, 39-48.	4.4	29
25	Controllable and scalable synthesis of hollow-structured porous aromatic polymer for selective adsorption and separation of HMF from reaction mixture of fructose dehydration. Chemical Engineering Journal, 2019, 358, 467-479.	12.7	29
26	Photoprogrammable Moisture-Responsive Actuation of a Shape Memory Polymer Film. ACS Applied Materials & Samp; Interfaces, 2022, 14, 10836-10843.	8.0	29
27	Facile synthesis of SiO2 supported GaN as an active catalyst for CO2 enhanced dehydrogenation of propane. Journal of CO2 Utilization, 2020, 38, 306-313.	6.8	28
28	Selective production of iso-paraffins from syngas over Co/SiO2 and Pd/beta hybrid catalysts. Catalysis Communications, 2005, 6, 503-506.	3.3	27
29	Metal-support interactions regulated via carbon coating – A case study of Co/SiO2 for Fischer-Tropsch synthesis. Fuel, 2018, 226, 213-220.	6.4	27
30	Effective activation of montmorillonite and its application for Fischer-Tropsch synthesis over ruthenium promoted cobalt. Fuel Processing Technology, 2015, 136, 87-95.	7.2	26
31	Highly Active and Stable Ni–SiO ₂ Prepared by a Complex-Decomposition Method for Pressurized Carbon Dioxide Reforming of Methane. Industrial & Engineering Chemistry Research, 2014, 53, 19077-19086.	3.7	25
32	Programmable Humidity-Responsive Actuation of Polymer Films Enabled by Combining Shape Memory Property and Surface-Tunable Hygroscopicity. ACS Applied Materials & Enabled Surfaces, 2021, 13, 38773-38782.	8.0	25
33	Alumina Grafted to SBA-15 in Supercritical CO ₂ as a Support of Cobalt for Fischer–Tropsch Synthesis. Energy & Fuels, 2012, 26, 6567-6575.	5.1	23
34	Light Olefin Synthesis from Syngas over Sulfide–Zeolite Composite Catalyst. Industrial & Engineering Chemistry Research, 2018, 57, 6815-6820.	3.7	23
35	Understanding the active-site nature of vanadia-based catalysts for oxidative dehydrogenation of ethylbenzene with CO2 via atomic layer deposited VOx on γ-Al2O3. Journal of Catalysis, 2019, 380, 195-203.	6.2	23
36	Cobalt Supported on Alkaline-Activated Montmorillonite as an Efficient Catalyst for Fischer–Tropsch Synthesis. Energy & Fuels, 2013, 27, 6362-6371.	5.1	22

#	Article	IF	CITATIONS
37	Nanoflake-assembled Al2O3-supported CeO2-ZrO2 as an efficient catalyst for oxidative dehydrogenation of ethylbenzene with CO2. Applied Surface Science, 2017, 398, 1-8.	6.1	22
38	Divergent Syntheses of Spiroindanones and 2-Substituted 1-Indanones by Ruthenium-Catalyzed Tandem Coupling and Cyclization of Aromatic Acids with \hat{l}_{\pm},\hat{l}^2 -Unsaturated Ketones. Journal of Organic Chemistry, 2019, 84, 1348-1362.	3.2	22
39	The delaminating and pillaring of MCM-22 for Fischer–Tropsch synthesis over cobalt. Catalysis Today, 2016, 274, 109-115.	4.4	21
40	Encapsulation of ultra-small Cu–Fe into ZSM-5 zeolites for NH3-SCR with broad reaction-temperature ranges. Microporous and Mesoporous Materials, 2022, 331, 111675.	4.4	21
41	Insights into a Multifunctional Hybrid Catalyst Composed of Co/SiO2 and Pd/Beta for Isoparaffin Production from Syngas. Industrial & Engineering Chemistry Research, 2005, 44, 7329-7336.	3.7	20
42	Co/Pillared Clay Bifunctional Catalyst for Controlling the Product Distribution of Fischerâ^'Tropsch Synthesis. Industrial & Engineering Chemistry Research, 2010, 49, 9004-9011.	3.7	20
43	The dehydrogenation of ethylbenzene with CO2 over V2O5/CexZr1â^'xO2 prepared with different methods. Journal of Molecular Catalysis A, 2010, 329, 64-70.	4.8	19
44	Fischer–Tropsch synthesis over Co/montmorillonite—Insights into the role of interlayer exchangeable cations. Applied Catalysis A: General, 2011, 405, 45-54.	4.3	19
45	Fischer-Tropsch synthesis over cobalt/montmorillonite promoted with different interlayer cations. Fuel, 2013, 109, 33-42.	6.4	19
46	Balancing free and confined metallic Ni for an active and stable catalyst—A case study of CO methanation over Ni/Ni–Al2O3. Journal of Energy Chemistry, 2020, 50, 73-84.	12.9	19
47	Formation of Isoparaffins through Pd/β Zeolite Application in Fischerâ^Tropsch Synthesis. Energy & Energy & Fuels, 2005, 19, 1790-1794.	5.1	18
48	Cobalt-supported carbon and alumina co-pillared montmorillonite for Fischer–Tropsch synthesis. Fuel Processing Technology, 2015, 138, 116-124.	7.2	17
49	Hyperbranched polymer micelles with triple-stimuli backbone-breakable iminoboronate ester linkages. Chinese Chemical Letters, 2020, 31, 1822-1826.	9.0	17
50	Potassium promotion effects in carbon nanotube supported molybdenum sulfide catalysts for carbon monoxide hydrogenation. Catalysis Today, 2016, 261, 137-145.	4.4	16
51	Controllable Tandem [3+2] Cyclization of Aromatic Aldehydes with Maleimides: Rhodium(III)-Catalyzed Divergent Synthesis of Indane-Fused Pyrrolidine-2,5-dione. Organic Letters, 2020, 22, 8808-8813.	4.6	16
52	Aldehyde as a Traceless Directing Group for Regioselective C–H Alkylation Catalyzed by Rhodium(III) in Air. Organic Letters, 2020, 22, 1259-1264.	4.6	16
53	Ruthenium (II)-catalyzed synthesis of phthalides via the cascade addition and cyclization of aromatic acids with aldehydes. Science China Chemistry, 2018, 61, 153-158.	8.2	15
54	Tailoring the surface structures of iron oxide nanorods to support Au nanoparticles for CO oxidation. Chinese Journal of Catalysis, 2019, 40, 1884-1894.	14.0	15

#	Article	lF	CITATIONS
55	Acid activated montmorillonite for gas-phase catalytic dehydration of monoethanolamine. Applied Clay Science, 2019, 168, 116-124.	5.2	15
56	Molecular-level investigation on supported CrOx catalyst for oxidative dehydrogenation of propane with carbon dioxide. Journal of Catalysis, 2022, 409, 87-97.	6.2	15
57	Photo-Dissociable Fe ³⁺ -Carboxylate Coordination: A General Approach toward Hydrogels with Shape Programming and Active Morphing Functionalities. ACS Applied Materials & Samp; Interfaces, 2021, 13, 59310-59319.	8.0	15
58	Rubber-like composites with tunable thermal- and photo-responsive shape memory properties. Chemical Engineering Journal, 2022, 447, 137534.	12.7	14
59	Insights into the vanadia catalyzed oxidative dehydrogenation of isobutane with CO2. Chinese Journal of Catalysis, 2014, 35, 1329-1336.	14.0	13
60	Catalytic behavior of manganese oxides for oxidative dehydrogenation of ethylbenzene with carbon dioxide. Journal of CO2 Utilization, 2017, 22, 63-70.	6.8	13
61			

#	Article	IF	CITATIONS
73	Backboneâ€Based LCSTâ€Type Hyperbranched Poly(oligo(ethylene glycol)) with CO ₂ â€Reversible Iminoboronate Linkers. Macromolecular Chemistry and Physics, 2018, 219, 1800346.	2.2	6
74	Flame-spray-pyrolysis amorphous alumina-silica for tailoring the product distribution of Fischer-Tropsch synthesis. Catalysis Today, 2020, 339, 40-47.	4.4	6
75	Tailoring the surface structure of iron compounds to optimize the selectivity of 3-nitrostyrene hydrogenation reaction over Pt catalyst. Chinese Chemical Letters, 2021, , .	9.0	6
76	CeO2-Promoted PtSn/SiO2 as a High-Performance Catalyst for the Oxidative Dehydrogenation of Propane with Carbon Dioxide. Nanomaterials, 2022, 12, 417.	4.1	6
77	Direct Asymmetric Aldol Reactions Catalyzed by L-Proline/PEG/SiO ₂ Composite Catalyst. Synthetic Communications, 2012, 42, 1559-1566.	2.1	5
78	Alpha-amino acid assisted synthesis of ordered mesoporous alumina with tunable structural properties. Materials Letters, 2018, 223, 17-20.	2.6	5
79	The Active Nature of Crystal MoS ₂ for Converting Sulfurâ€Containing Syngas. ChemCatChem, 2019, 11, 1112-1122.	3.7	5
80	Insights into the Oxidative Dehydrogenation of Ethylbenzene with CO2 Catalyzed by the Ordered Mesoporous V2O5–Ce0.5Zr0.5O2–Al2O3. Industrial & Engineering Chemistry Research, 2019, 58, 21372-21381.	3.7	5
81	Elucidating the Support-Size Effect on the Catalytic Stability of CrOx/Silicalite-1 for Oxidative Dehydrogenation of Propane with CO2. Catalysis Letters, 2023, 153, 790-804.	2.6	5
82	Light-Guided Growth of Gradient Hydrogels with Programmable Geometries and Thermally Responsive Actuations. ACS Applied Materials & Samp; Interfaces, 2022, 14, 29188-29196.	8.0	5
83	Microfluidic-assisted assembly of fluorescent self-healing gel particles toward dual-signal sensors. Journal of Materials Science, 2021, 56, 14832-14843.	3.7	4
84	Ultrafast crystallization of mesoporous Sn-MFI single crystals achieved by addition of the cationic polyelectrolyte in starting gels. Microporous and Mesoporous Materials, 2022, 337, 111922.	4.4	3
85	Insights into the unexpected formation of hexamethylbenzene during steam reforming of dimethyl ether over zeolite-based bifunctional catalysts. Catalysis Today, 2013, 210, 75-80.	4.4	2
86	Backboneâ€Hydrolyzable Poly(oligo(ethylene glycol) bis(glycidyl ether)―alt â€ketoglutaric acid) with Tunable LCST Behavior. Macromolecular Chemistry and Physics, 2019, 220, 1900004.	2.2	1
87	Sequential Cobalt/Rhodiumâ€Catalyzed Tandem Cyclization of Aromatic Aldehydes with Acrylates for Preparing 3â€Substituted Phthalides in Oxygen Atmosphere and Neat Water. Asian Journal of Organic Chemistry, 2022, 11, .	2.7	1
88	Kinetics behavior of Co/Ni-ordered mesoporous alumina for the CO methanation. Chemical Engineering Science: X, 2021, 10, 100094.	1.5	0