Ernest Greene

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4530123/publications.pdf

Version: 2024-02-01

37 papers	224 citations	1040056 9 h-index	1125743 13 g-index
38 all docs	38 docs citations	38 times ranked	84 citing authors

#	Article	IF	CITATIONS
1	An Evolutionary Perspective on the Design of Neuromorphic Shape Filters. IEEE Access, 2020, 8, 114228-114238.	4.2	0
2	Evaluating spatiotemporal integration of shape cues. PLoS ONE, 2020, 15, e0224530.	2.5	2
3	Masking the Integration of Complementary Shape Cues. Frontiers in Neuroscience, 2019, 13, 178.	2.8	О
4	Comparing methods for scaling shape similarity. AIMS Neuroscience, 2019, 6, 54-59.	2.3	0
5	Computational Scaling of Shape Similarity That has Potential for Neuromorphic Implementation. IEEE Access, 2018, 6, 38294-38302.	4.2	4
6	Evaluating persistence of shape information using a matching protocol. AIMS Neuroscience, 2018, 5, 81-96.	2.3	4
7	Visual encoding of partial unknown shape boundaries. AIMS Neuroscience, 2018, 5, 132-147.	2.3	6
8	New encoding concepts for shape recognition are needed. AIMS Neuroscience, 2018, 5, 162-178.	2.3	6
9	Information persistence evaluated with low-density dot patterns. Acta Psychologica, 2016, 170, 215-225.	1.5	11
10	Recognizing Words and Reading Sentences with Microsecond Flash Displays. PLoS ONE, 2016, 11, e0145697.	2.5	4
11	Evaluating Letter Recognition, Flicker Fusion, and the Talbot-Plateau Law using Microsecond-Duration Flashes. PLoS ONE, 2015, 10, e0123458.	2.5	8
12	Recognition of letters displayed as briefly flashed dot patterns. Attention, Perception, and Psychophysics, 2015, 77, 1955-1969.	1.3	17
13	Shape Recognition Elicited by Microsecond Flashes is Not Based on Photon Quantity. I-Perception, 2014, 5, 87-93.	1.4	6
14	Violation of Bloch's Law That Specifies Reciprocity of Intensity and Duration with Brief Light Flashes. I-Perception, 2013, 4, 543-550.	1.4	5
15	Shapes Displayed with Durations in the Microsecond Range Do Not Obey Bloch's Law of Temporal Summation. I-Perception, 2013, 4, 429-436.	1.4	4
16	Evaluating the contribution of shape attributes to recognition using the minimal transient discrete cue protocol. Behavioral and Brain Functions, 2012, 8, 53.	3.3	12
17	Wavelet modelling of collinearity judgment error. British Journal of Mathematical and Statistical Psychology, 2008, 61, 189-210.	1.4	1
18	Additional evidence that contour attributes are not essential cues for object recognition. Behavioral and Brain Functions, 2008, 4, 26.	3.3	6

#	Article	IF	CITATIONS
19	Recognition of Objects Displayed with Incomplete Sets of Discrete Boundary Dots. Perceptual and Motor Skills, 2007, 104, 1043-1059.	1.3	10
20	The integration window for shape cues is a function of ambient illumination. Behavioral and Brain Functions, 2007, 3, 15.	3.3	6
21	Spatial and temporal proximity as factors in shape recognition. Behavioral and Brain Functions, 2007, 3, 27.	3.3	6
22	Retinal Encoding of Ultrabrief Shape Recognition Cues. PLoS ONE, 2007, 2, e871.	2.5	15
23	Information persistence in the integration of partial cues for object recognition. Perception & Psychophysics, 2007, 69, 772-784.	2.3	19
24	Simultaneity in the millisecond range as a requirement for effective shape recognition. Behavioral and Brain Functions, 2006, 2, 38.	3.3	14
25	Do Rotation Coordinates Provide the Substrate for a Mental Protractor?. Perception, 2005, 34, 1339-1352.	1.2	1
26	Modeling Judgments of Linear Extent. Perceptual and Motor Skills, 2004, 98, 1049-1073.	1.3	0
27	Mapping is Not Sufficient for Specifying Position in Visual Space. Perceptual and Motor Skills, 2003, 97, 97-98.	1.3	0
28	Observation Distance and Recognition of Photographs of Celebrities' Faces. Perceptual and Motor Skills, 2002, 95, 637-651.	1.3	9
29	Further Consideration of Size Illusions in Random Dot Stereograms. Perceptual and Motor Skills, 2001, 93, 205-212.	1.3	1
30	Evaluating Models of Collinearity Judgment for Reliability and Scale. Perception, 2001, 30, 543-558.	1.2	7
31	Idiosyncratic profiles of collinearity error using segments and dot pairs. Psychological Research, 2001, 65, 260-278.	1.7	5
32	Individual differences in collinearity judgment as a function of angular position. Perception & Psychophysics, 2000, 62, 1440-1458.	2.3	11
33	Evaluating MÃ 1 4ller-Lyer effects using single fin-set configurations. Perception & Psychophysics, 1997, 59, 293-312.	2.3	19
34	Use of segment arrays to evaluate the strength of angular induction. Perception & Psychophysics, 1990, 47, 243-252.	2.3	3
35	More to hippocampal-collicular relations than meets the eye. Behavioral and Brain Sciences, 1987, 10, 124-125.	0.7	0
36	The Influence of Stroke on Visual Gestalt Operations. International Journal of Neuroscience, 1981, 14, 47-60.	1.6	2

ERNEST GREENE

#	Article	IF	CITATIONS
37	On panspatial theories of brain and behavior. Behavioral and Brain Sciences, 1979, 2, 503-503.	0.7	O