Oguzhan Oguz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4529685/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Mechanical reinforcement and memory effect of strain-induced soft segment crystals in thermoplastic polyurethane-urea elastomers. Polymer, 2021, 223, 123708.	1.8	26
2	Poly (Lactic Acid)/Ground Tire Rubber Blends Using Peroxide Vulcanization. Polymers, 2021, 13, 1496.	2.0	10
3	Geometric Confinement Controls Stiffness, Strength, Extensibility, and Toughness in Poly(urethane–urea) Copolymers. Macromolecules, 2021, 54, 4704-4725.	2.2	5
4	Strain induced crystallization in vulcanized natural rubber containing ground tire rubber particles with reinforcement and nucleation abilities. Polymer Testing, 2021, 101, 107313.	2.3	19
5	Poly(lactide)/cellulose nanocrystal nanocomposites by highâ€ s hear mixing. Polymer Engineering and Science, 2021, 61, 1028-1040.	1.5	13
6	Stiff, Strong, Tough, and Highly Stretchable Hydrogels Based on Dual Stimuli-Responsive Semicrystalline Poly(urethane–urea) Copolymers. ACS Applied Polymer Materials, 2021, 3, 5683-5695.	2.0	4
7	Heat source and voiding signatures of Mullins damage in filled EPDM. Polymer Testing, 2020, 91, 106838.	2.3	8
8	Effect of the Strain Rate on Damage in Filled EPDM during Single and Cyclic Loadings. Polymers, 2020, 12, 3021.	2.0	9
9	Strain and filler ratio transitions from chains network to filler network damage in EPDM during single and cyclic loadings. Polymer, 2020, 197, 122435.	1.8	16
10	Strain-induced network chains damage in carbon black filled EPDM. Polymer, 2019, 175, 329-338.	1.8	23
11	A Sustainable Approach to Produce Stiff, Super-Tough, and Heat-Resistant Poly(lactic acid)-Based Green Materials. ACS Sustainable Chemistry and Engineering, 2019, 7, 7869-7877.	3.2	33
12	Tuning Interaction Parameters of Thermoplastic Polyurethanes in a Binary Solvent To Achieve Precise Control over Microphase Separation. Journal of Chemical Information and Modeling, 2019, 59, 1946-1956.	2.5	15
13	Effect of surface modification of colloidal silica nanoparticles on the rigid amorphous fraction and mechanical properties of amorphous polyurethane–urea–silica nanocomposites. Journal of Polymer Science Part A, 2019, 57, 2543-2556.	2.5	7
14	Specific Interactions and Self-Organization in Polymer/Functionalized Nanoparticle Systems. , 2019, , 85-117.		2
15	Polymer Composites Containing Functionalized Nanoparticles and the Environment. , 2019, , 437-466.		2
16	Polymer Nanocomposites With Decorated Metal Oxides. , 2019, , 287-323.		9
17	Effect of filler content on the structureâ€property behavior of poly(ethylene oxide) based polyurethaneureaâ€silica nanocomposites. Polymer Engineering and Science, 2018, 58, 1097-1107.	1.5	15
18	Poly(propylene)/waste vulcanized ethylene- propylene-diene monomer (PP/WEPDM) blends prepared by high-shear thermo-kinetic mixer. Journal of Elastomers and Plastics, 2018, 50, 537-553.	0.7	6

Oguzhan Oguz

#	Article	IF	CITATIONS
19	Dynamic glass transition of the rigid amorphous fraction in polyurethane-urea/SiO ₂ nanocomposites. Soft Matter, 2017, 13, 4580-4590.	1.2	28
20	Effect of soft segment molecular weight on the glass transition, crystallinity, molecular mobility and segmental dynamics of poly(ethylene oxide) based poly(urethane–urea) copolymers. RSC Advances, 2017, 7, 40745-40754.	1.7	15
21	High-Performance Green Composites of Poly(lactic acid) and Waste Cellulose Fibers Prepared by High-Shear Thermokinetic Mixing. Industrial & Engineering Chemistry Research, 2017, 56, 8568-8579.	1.8	19
22	Soft segment length controls morphology of poly(ethylene oxide) based segmented poly(urethane-urea) copolymers in a binary solvent. Computational Materials Science, 2017, 138, 58-69.	1.4	12
23	Low Density Polypropylene/Waste Cellulose Fiber Composites by High-Shear Thermo-Kinetic Mixer. International Polymer Processing, 2017, 32, 562-567.	0.3	3
24	Production of PEG grafted PAN copolymers and their electrospun nanowebs as novel thermal energy storage materials. Thermochimica Acta, 2016, 643, 83-93.	1.2	38
25	Polyurethaneurea–silica nanocomposites: Preparation and investigation of the structure–property behavior. Polymer, 2013, 54, 5310-5320.	1.8	53