L M Dorogin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4529536/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The effect of surface roughness and viscoelasticity on rubber adhesion. Soft Matter, 2017, 13, 3602-3621.	1.2	89
2	Elasticity and yield strength of pentagonal silver nanowires: In situ bending tests. Materials Chemistry and Physics, 2014, 143, 1026-1031.	2.0	50
3	Rubber contact mechanics: adhesion, friction and leakage of seals. Soft Matter, 2017, 13, 9103-9121.	1.2	47
4	Role of Preload in Adhesion of Rough Surfaces. Physical Review Letters, 2017, 118, 238001.	2.9	36
5	Adhesion and Mechanical Properties of PDMS-Based Materials Probed with AFM: A Review. Reviews on Advanced Materials Science, 2018, 56, 62-78.	1.4	36
6	Application of polydimethylsiloxane in photocatalyst composite materials: A review. Reactive and Functional Polymers, 2021, 158, 104781.	2.0	27
7	Realâ€ŧime manipulation of ZnO nanowires on a flat surface employed for tribological measurements: Experimental methods and modeling. Physica Status Solidi (B): Basic Research, 2013, 250, 305-317.	0.7	26
8	Shape Restoration Effect in Ag–SiO ₂ Core–Shell Nanowires. Nano Letters, 2014, 14, 5201-5205.	4.5	26
9	Mechanical and structural characterizations of gamma- and alpha-alumina nanofibers. Materials Characterization, 2015, 107, 119-124.	1.9	25
10	Mechanical characterization of TiO2 nanofibers produced by different electrospinning techniques. Materials Characterization, 2015, 100, 98-103.	1.9	25
11	Crystal mismatched layers in pentagonal nanorods and nanoparticles. Physica Status Solidi (B): Basic Research, 2010, 247, 288-298.	0.7	24
12	Manipulation of nanoparticles of different shapes inside a scanning electron microscope. Beilstein Journal of Nanotechnology, 2014, 5, 133-140.	1.5	24
13	The effect of substrate roughness on the static friction of CuO nanowires. Surface Science, 2012, 606, 1393-1399.	0.8	23
14	Real-time measurements of sliding friction and elastic properties of ZnO nanowires inside a scanning electron microscope. Solid State Communications, 2011, 151, 1244-1247.	0.9	22
15	Modeling of kinetic and static friction between an elastically bent nanowire and a flat surface. Journal of Materials Research, 2012, 27, 580-585.	1.2	22
16	In situ measurement of the kinetic friction of ZnO nanowires inside a scanning electron microscope. Applied Surface Science, 2012, 258, 3227-3231.	3.1	21
17	In situ measurements of ultimate bending strength of CuO and ZnO nanowires. European Physical Journal B, 2012, 85, 1.	0.6	19
18	Complex tribomechanical characterization of ZnO nanowires: nanomanipulations supported by FEM simulations. Nanotechnology, 2016, 27, 335701.	1.3	19

L M Dorogin

#	Article	IF	CITATIONS
19	Real-time manipulation of gold nanoparticles inside a scanning electron microscope. Solid State Communications, 2011, 151, 688-692.	0.9	17
20	Analysis of static friction and elastic forces in a nanowire bent on a flat surface: A comparative study. Tribology International, 2014, 72, 31-34.	3.0	15
21	Adhesion between rubber and glass in dry and lubricated condition. Journal of Chemical Physics, 2018, 148, 234702.	1.2	14
22	Structural transformations in nano- and microobjects triggered by disclinations. Journal of Materials Research, 2012, 27, 545-551.	1.2	13
23	Adhesion, friction and viscoelastic properties for non-aged and aged Styrene Butadiene rubber. Tribology International, 2018, 121, 78-83.	3.0	13
24	Misfit layer formation in icosahedral nanoparticles. Technical Physics Letters, 2008, 34, 779-781.	0.2	11
25	Simultaneous measurement of static and kinetic friction of ZnO nanowires in situ with a scanning electron microscope. Micron, 2012, 43, 1140-1146.	1.1	11
26	Some aspects of formation and tribological properties of silver nanodumbbells. Nanoscale Research Letters, 2014, 9, 186.	3.1	11
27	Electron beam induced growth of silver nanowhiskers. Journal of Crystal Growth, 2015, 410, 63-68.	0.7	11
28	Contact mechanics for polydimethylsiloxane: from liquid to solid. Soft Matter, 2018, 14, 1142-1148.	1.2	11
29	Pentagonal Nanorods and Nanoparticles with Mismatched Shell Layers. Journal of Nanoscience and Nanotechnology, 2010, 10, 6136-6143.	0.9	9
30	Mechanical properties of sol–gel derived SiO ₂ nanotubes. Beilstein Journal of Nanotechnology, 2014, 5, 1808-1814.	1.5	9
31	Transparent ZnO-coated polydimethylsiloxane-based material for photocatalytic purification applications. Journal of Coatings Technology Research, 2020, 17, 573-579.	1.2	8
32	On the retraction of an adhesive cylindrical indenter from a viscoelastic substrate. Tribology International, 2021, 164, 107234.	3.0	8
33	Mechanical characterisation of pentagonal gold nanowires in three different test configurations: A comparative study. Micron, 2019, 124, 102686.	1.1	7
34	Hydrophilic polydimethylsiloxane-based sponges for dewatering applications. Materials Letters, 2020, 263, 127278.	1.3	7
35	A model of whisker crystal growth from a pentagonal small particle. Technical Physics Letters, 2014, 40, 174-176.	0.2	5
36	Metal nanodumbbells for nanomanipulations and tribological experiments. Physica Scripta, 2015, 90, 094007.	1.2	4

L M Dorogin

#	Article	IF	CITATIONS
37	Structural factor in bending testing of fivefold twinned nanowires revealed by finite element analysis. Physica Scripta, 2016, 91, 115701.	1.2	4
38	Formation and characterization of microcantilevers produced from ionic liquid by electron beam irradiation. Journal of Molecular Liquids, 2017, 229, 45-50.	2.3	3
39	Abrupt elastic-to-plastic transition in pentagonal nanowires under bending. Beilstein Journal of Nanotechnology, 2019, 10, 2468-2476.	1.5	3
40	Phase transformations in icosahedral small copper particles during their annealing in different gas media. Bulletin of the Russian Academy of Sciences: Physics, 2015, 79, 1098-1100.	0.1	1
41	Elastic Properties of Oxide Nanowhiskers Prepared from Electrolytically Deposited Copper. Russian Physics Journal, 2015, 58, 843-847.	0.2	1
42	The Study of Nanoindentation of Atomically Flat GaAs Surface using the Tip of Atomic-Force Microscope. Semiconductors, 2019, 53, 2110-2114.	0.2	0
43	Adhesion of polydimethylsiloxane during molecular cross-linking. Letters on Materials, 2019, 9, 58-63.	0.2	0
44	Metal nanoparticles as an electromagnetic microwave heat-cure agent for polydimethylsiloxane elastomers. Letters on Materials, 2022, 12, 49-53.	0.2	0