Volodymyr N Ivanov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4529445/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Applications of microorganisms to geotechnical engineering for bioclogging and biocementation of soil inÂsitu. Reviews in Environmental Science and Biotechnology, 2008, 7, 139-153.	3.9	715
2	Microbially Induced Calcium Carbonate Precipitation on Surface or in the Bulk of Soil. Geomicrobiology Journal, 2012, 29, 544-549.	1.0	323
3	Optimization of calcium-based bioclogging and biocementation of sand. Acta Geotechnica, 2014, 9, 277-285.	2.9	210
4	Formation of water-impermeable crust on sand surface using biocement. Cement and Concrete Research, 2011, 41, 1143-1149.	4.6	130
5	Size-effect on the physical characteristics of the aerobic granule in a SBR. Applied Microbiology and Biotechnology, 2003, 60, 687-695.	1.7	123
6	Microfluidic Characterization and Continuous Separation of Cells and Particles Using Conducting Poly(dimethyl siloxane) Electrode Induced Alternating Current-Dielectrophoresis. Analytical Chemistry, 2011, 83, 9579-9585.	3.2	115
7	Specific layers in aerobically grown microbial granules. Letters in Applied Microbiology, 2002, 34, 254-257.	1.0	114
8	Presence of Anaerobic Bacteroides in Aerobically Grown Microbial Granules. Microbial Ecology, 2002, 44, 278-285.	1.4	98
9	Halotolerant, alkaliphilic urease-producing bacteria from different climate zones and their application for biocementation of sand. World Journal of Microbiology and Biotechnology, 2013, 29, 1453-1460.	1.7	95
10	Phosphate removal from the returned liquor of municipal wastewater treatment plant using iron-reducing bacteria. Journal of Applied Microbiology, 2005, 98, 1152-1161.	1.4	71
11	Bioaugmentation and enhanced formation of microbial granules used in aerobic wastewater treatment. Applied Microbiology and Biotechnology, 2006, 70, 374-381.	1.7	70
12	The removal of nitrogen and phosphorus from reject water of municipal wastewater treatment plant using ferric and nitrate bioreductions. Bioresource Technology, 2010, 101, 3992-3999.	4.8	65
13	Production and applications of crude polyhydroxyalkanoate-containing bioplastic from the organic fraction of municipal solid waste. International Journal of Environmental Science and Technology, 2015, 12, 725-738.	1.8	60
14	Construction Biotechnology: a new area of biotechnological research and applications. World Journal of Microbiology and Biotechnology, 2015, 31, 1303-1314.	1.7	58
15	Influence of phenol on nitrification by microbial granules. Process Biochemistry, 2005, 40, 3285-3289.	1.8	53
16	Biomass and porosity profiles in microbial granules used for aerobic wastewater treatment. Letters in Applied Microbiology, 2003, 36, 297-301.	1.0	48
17	Strengthening of Soft Marine Clay Using Bioencapsulation. Marine Georesources and Geotechnology, 2015, 33, 320-324.	1.2	48
18	Immobilization of Sand Dust and Associated Pollutants Using Bioaggregation. Water, Air, and Soil Pollution, 2013, 224, 1.	1.1	46

VOLODYMYR N IVANOV

#	Article	IF	CITATIONS
19	Environmental safety and biosafety in construction biotechnology. World Journal of Microbiology and Biotechnology, 2019, 35, 26.	1.7	42
20	Bacteriological examination of ballast water in Singapore Harbour by flow cytometry with FISH. Marine Pollution Bulletin, 2004, 49, 334-343.	2.3	41
21	The removal of phosphorus from reject water in a municipal wastewater treatment plant using iron ore. Journal of Chemical Technology and Biotechnology, 2009, 84, 78-82.	1.6	36
22	Ukrainian dietary bakery product with selenium-enriched yeast. LWT - Food Science and Technology, 2008, 41, 890-895.	2.5	35
23	Effects of Iron Compounds on the Treatment of Fat-Containing Wastewaters. Applied Biochemistry and Microbiology, 2002, 38, 255-258.	0.3	32
24	Microbiological monitoring in the biodegradation of sewage sludge and food waste. Journal of Applied Microbiology, 2004, 96, 641-647.	1.4	31
25	Heterogeneity of Escherichia coli population by respiratory activity and membrane potential of cells during growth and long-term starvation. Microbiological Research, 2011, 166, 129-135.	2.5	31
26	Calcium phosphate biocement using bone meal and acid urease: An eco-friendly approach for soil improvement. Journal of Cleaner Production, 2021, 319, 128782.	4.6	30
27	Effect of Iron Hydroxide on Phosphate Removal during Anaerobic Digestion of Activated Sludge. Applied Biochemistry and Microbiology, 2004, 40, 376-380.	0.3	29
28	Biodegradation of estrogens by facultative anaerobic iron-reducing bacteria. Process Biochemistry, 2010, 45, 284-287.	1.8	26
29	Flow cytometry and conventional enumeration of microorganisms in ships' ballast water and marine samples. Marine Pollution Bulletin, 2003, 46, 308-313.	2.3	25
30	Intensive aerobic bioconversion of sewage sludge and food waste into fertiliser. Waste Management and Research, 2003, 21, 405-415.	2.2	24
31	The use of hybrid anaerobic solid-liquid (HASL) system for the treatment of lipid-containing food waste. Journal of Chemical Technology and Biotechnology, 2005, 80, 455-461.	1.6	24
32	Iron- and calcium-based biogrouts for porous soils. Proceedings of Institution of Civil Engineers: Construction Materials, 2014, 167, 36-41.	0.7	21
33	Construction Biotechnology. Green Energy and Technology, 2017, , .	0.4	21
34	Ecofriendly calcium phosphate and calcium bicarbonate biogrouts. Journal of Cleaner Production, 2019, 218, 328-334.	4.6	19
35	Intensive bioconversion of sewage sludge and food waste by Bacillus thermoamylovorans. World Journal of Microbiology and Biotechnology, 2003, 19, 427-432.	1.7	18
36	The removal of phosphate from wastewater using anoxic reduction of iron ore in the rotating reactor. Biochemical Engineering Journal, 2009, 46, 223-226.	1.8	17

VOLODYMYR N IVANOV

#	Article	IF	CITATIONS
37	Starter culture of Pseudomonas veronii strain B for aerobic granulation. World Journal of Microbiology and Biotechnology, 2008, 24, 533-539.	1.7	16
38	Value-Added Biotechnological Products from Organic Wastes. , 2010, , 343-394.		15
39	Title is missing!. World Journal of Microbiology and Biotechnology, 2000, 16, 425-430.	1.7	14
40	Iron-containing clay and hematite iron ore in slurry-phase anaerobic digestion of chicken manure. AIMS Materials Science, 2019, 6, 821-832.	0.7	14
41	Sealing of sand using spraying and percolating biogrouts for the construction of model aquaculture pond in arid desert. International Aquatic Research, 2016, 8, 207-216.	1.5	13
42	Denitrification of Drinking Water Using Biofilms Formed byParacoccus denitrificansand Microbial Adhesion. Environmental Engineering Science, 2004, 21, 283-290.	0.8	12
43	Quantification of methanogens by fluorescence in situ hybridization with oligonucleotide probe. Applied Microbiology and Biotechnology, 2006, 73, 696-702.	1.7	12
44	Use of Biogeotechnologies for Soil Improvement. , 2015, , 571-589.		12
45	Aggregation of ammonia-oxidizing bacteria in microbial biofilm on oyster shell surface. World Journal of Microbiology and Biotechnology, 2006, 22, 807-812.	1.7	11
46	Biotechnological production of biogrout from iron ore and cellulose. Journal of Chemical Technology and Biotechnology, 2017, 92, 180-187.	1.6	11
47	Title is missing!. World Journal of Microbiology and Biotechnology, 2001, 17, 583-589.	1.7	10
48	Soil and Waste Treatment Using Biocement. , 2009, , .		10
49	Title is missing!. World Journal of Microbiology and Biotechnology, 2003, 19, 527-533.	1.7	9
50	The effect of various iron hydroxide concentrations on the anaerobic fermentation of sulfate-containing model wastewater. Applied Biochemistry and Microbiology, 2006, 42, 284-288.	0.3	9
51	Microbial structure of nitrifying granules and their estrogens degradation properties. Water Science and Technology, 2009, 59, 1855-1862.	1.2	8
52	Taxon-specific Content of Oligonucleotide Triplets in 16S rRNAs of Anoxygenic Phototrophic and Nitrifying Bacteria. Journal of Theoretical Biology, 1999, 196, 289-296.	0.8	7
53	Chapter 6 Structure of aerobically grown microbial granules. Waste Management Series, 2006, , 115-II.	0.0	7

54 Applications of Environmental Biotechnology. , 2010, , 1-17.

6

VOLODYMYR N IVANOV

#	Article	IF	CITATIONS
55	Wastewater engineering applications of BiolronTech process based on the biogeochemical cycle of iron bioreduction and (bio)oxidation. AIMS Environmental Science, 2014, 1, 53-66.	0.7	6
56	Calcite/aragonite-biocoated artificial coral reefs for marine parks. AIMS Environmental Science, 2017, 4, 586-595.	0.7	6
57	SCREENING AND SELECTION OF MICROORGANISMS FOR THE ENVIRONMENTAL BIOTECHNOLOGY PROCESS. , 2012, , 1137-1149.		5
58	Cell dualism: presence of cells with alternative membrane potentials in growing populations of bacteria and yeasts. Journal of Bioenergetics and Biomembranes, 2013, 45, 505-510.	1.0	4
59	Biocementation technology for construction of artificial oasis in sandy desert. Journal of King Saud University, Engineering Sciences, 2020, 32, 491-494.	1.2	4
60	Assessment of correlation between physiological states of Escherichia coli cells and their susceptibility to chlorine using flow cytometry. Water Science and Technology: Water Supply, 2013, 13, 1056-1062.	1.0	4
61	Chapter 10 Seeds for aerobic microbial granules. Waste Management Series, 2006, , 213-VI.	0.0	3
62	Physiological heterogeneity of suspended microbial aggregates. Water Science and Technology, 2008, 58, 2435-2441.	1.2	3
63	Biocement: Green Building- and Energy-Saving Material. Advanced Materials Research, 0, 347-353, 4051-4054.	0.3	3
64	Biotechnological immobilization of chemical, biological, and radioactive pollutants on land and infrastructure demolition waste after industrial accident, military action, or terrorist attack. , 2020, , 377-393.		3
65	Labelled trinucleotides as quantitative probes to identify Bacillus spp. using fluorescent in situ hybridization. Molecular and Cellular Probes, 2000, 14, 89-93.	0.9	2
66	Chemicals and Allied Products. Water Environment Research, 2005, 77, 1770-1828.	1.3	2
67	Chapter 7 Microorganisms of aerobic microbial granules. Waste Management Series, 2006, 6, 135-III.	0.0	2
68	Iron- and Calcium-Based Biogrouts for Soil Improvement. , 2014, , .		2
69	Basics of Biotechnology for Civil and Environmental Engineers. Green Energy and Technology, 2017, , 23-40.	0.4	2
70	Environmental safety of biotechnological materials and processes. , 2020, , 359-375.		2
71	Microbially-Mediated Decontamination of CBRN Agents on Land and Infrastructure Using Biocementation. NATO Science for Peace and Security Series C: Environmental Security, 2020, , 233-244.	0.1	2
72	Number of Triplets in 16S rRNA Gene Related with Pathogenicity of Bacillus spp. and Clostridium spp Journal of Theoretical Biology, 2000, 205, 581-586.	0.8	1

#	Article	IF	CITATIONS
73	Removal of the Recalcitrant Artificial Sweetener Sucralose and Its By-Products from Industrial Wastewater Using Microbial Reduction/Oxidation of Iron. ChemEngineering, 2018, 2, 37.	1.0	1
74	Decontamination of Seawater in a Harbor: Case Study of Potential Bioterrorism Attack. Smart Innovation, Systems and Technologies, 2022, , 217-226.	0.5	1
75	Physiological comparison of cells with high and low alcohol dehydrogenase activities in bacterial populations consuming ethanol. Annals of Microbiology, 2015, 65, 1007-1016.	1.1	0
76	Introduction to viruses, bacteria, and fungi in the built environment. , 2022, , 11-27.		0