
Daniel Therriault

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4529421/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Chaotic mixing in three-dimensional microvascular networks fabricated by direct-write assembly. Nature Materials, 2003, 2, 265-271.	27.5	627
2	Threeâ€Dimensional Printing of Multifunctional Nanocomposites: Manufacturing Techniques and Applications. Advanced Materials, 2016, 28, 5794-5821.	21.0	470
3	Multiâ€Material 3D and 4D Printing: A Survey. Advanced Science, 2020, 7, 1902307.	11.2	323
4	Lightning strike protection of composites. Progress in Aerospace Sciences, 2014, 64, 1-16.	12.1	279
5	One-Step Solvent Evaporation-Assisted 3D Printing of Piezoelectric PVDF Nanocomposite Structures. ACS Applied Materials & Interfaces, 2017, 9, 20833-20842.	8.0	206
6	Ultravioletâ€Assisted Directâ€Write Fabrication of Carbon Nanotube/Polymer Nanocomposite Microcoils. Advanced Materials, 2010, 22, 592-596.	21.0	175
7	Solventâ€Cast Threeâ€Dimensional Printing of Multifunctional Microsystems. Small, 2013, 9, 4118-4122.	10.0	163
8	Three-dimensional printing of highly conductive polymer nanocomposites for EMI shielding applications. Materials Today Communications, 2017, 11, 112-118.	1.9	138
9	3D printing of a multifunctional nanocomposite helical liquid sensor. Nanoscale, 2015, 7, 6451-6456.	5.6	124
10	Direct 3D Printing of Hybrid Nanofiber-Based Nanocomposites for Highly Conductive and Shape Memory Applications. ACS Applied Materials & Interfaces, 2019, 11, 24523-24532.	8.0	119
11	Processing and Properties of Chitosan Inks for 3D Printing of Hydrogel Microstructures. ACS Biomaterials Science and Engineering, 2018, 4, 2643-2652.	5.2	99
12	3D Printing of Highly Conductive Nanocomposites for the Functional Optimization of Liquid Sensors. Small, 2016, 12, 6076-6082.	10.0	91
13	Properties of Polylactide Inks for Solvent-Cast Printing of Three-Dimensional Freeform Microstructures. Langmuir, 2014, 30, 1142-1150.	3.5	86
14	Multi-Material Direct Ink Writing (DIW) for Complex 3D Metallic Structures with Removable Supports. ACS Applied Materials & Interfaces, 2019, 11, 8499-8506.	8.0	82
15	Rheological and foaming behavior of linear and branched polylactides. Rheologica Acta, 2014, 53, 779-790.	2.4	81
16	3D Printing of Microstructured and Stretchable Chitosan Hydrogel for Guided Cell Growth. Advanced Biology, 2017, 1, 1700058.	3.0	76
17	Mechanical and morphological properties of injection molded linear and branched-polylactide (PLA) nanocomposite foams. European Polymer Journal, 2015, 73, 455-465.	5.4	73
18	3D printing of a self-healing nanocomposite for stretchable sensors. Journal of Materials Chemistry C. 2018. 6. 12180-12186.	5.5	70

#	Article	IF	CITATIONS
19	Novel direct-write CMOS-based laboratory-on-chip: Design, assembly and experimental results. Sensors and Actuators A: Physical, 2007, 134, 27-36.	4.1	65
20	Micro-extrusion of organic inks for direct-write assembly. Journal of Micromechanics and Microengineering, 2008, 18, 115020.	2.6	63
21	Simultaneous 3D Printing and Poling of PVDF and Its Nanocomposites. ACS Applied Energy Materials, 2018, 1, 2474-2482.	5.1	61
22	Fast Synthesis of ZnO Nanostructures by Laser-Induced Decomposition of Zinc Acetylacetonate. Inorganic Chemistry, 2007, 46, 11036-11047.	4.0	58
23	Damage response of composites coated with conducting materials subjected to emulated lightning strikes. Materials and Design, 2018, 139, 45-55.	7.0	56
24	Rheological Behavior of Fugitive Organic Inks for Direct-Write Assembly. Applied Rheology, 2007, 17, 10112-1-10112-8.	5.2	49
25	A 0.18-μm CMOS capacitive sensor Lab-on-Chip. Sensors and Actuators A: Physical, 2008, 141, 454-462.	4.1	49
26	Instabilityâ€Assisted Direct Writing of Microstructured Fibers Featuring Sacrificial Bonds. Advanced Materials, 2015, 27, 3676-3680.	21.0	43
27	Metallization of Carbon Fiber Reinforced Polymers for Lightning Strike Protection. Journal of Materials Engineering and Performance, 2018, 27, 5205-5211.	2.5	41
28	Preparation of Highly Exfoliated Polyester–Clay Nanocomposites: Process–Property Correlations. Langmuir, 2012, 28, 791-803.	3.5	39
29	Solvent-cast based metal 3D printing and secondary metallic infiltration. Journal of Materials Chemistry C, 2017, 5, 10448-10455.	5.5	38
30	Preparation and mechanical characterization of laser ablated single-walled carbon-nanotubes/polyurethane nanocomposite microbeams. Composites Science and Technology, 2010, 70, 518-524.	7.8	34
31	Reinforcing epoxy nanocomposites with functionalized carbon nanotubes via biotin–streptavidin interactions. Composites Science and Technology, 2012, 72, 1387-1395.	7.8	31
32	Synthesis of Highly Conductive, Uniformly Silver-Coated Carbon Nanofibers by Electroless Deposition. ACS Applied Materials & Interfaces, 2017, 9, 29010-29020.	8.0	29
33	Quiescent and shear-induced crystallization of linear and branched polylactides. Rheologica Acta, 2015, 54, 831-845.	2.4	27
34	CMOS based capacitive sensor laboratory-on-chip: a multidisciplinary approach. Analog Integrated Circuits and Signal Processing, 2009, 59, 1-12.	1.4	26
35	Coextrusion of Multifunctional Smart Sensors. Advanced Engineering Materials, 2018, 20, 1800206.	3.5	26
36	A direct-write microfluidic fabrication process for CMOS-based Lab-on-Chip applications. Microelectronic Engineering, 2009, 86, 2104-2109.	2.4	22

3

#	Article	IF	CITATIONS
37	Development of aqueous protein/polysaccharide mixture-based inks for 3D printing towards food applications. Food Hydrocolloids, 2022, 131, 107742.	10.7	22
38	Electrically Conductive Silver Nanoparticlesâ€Filled Nanocomposite Materials as Surface Coatings of Composite Structures. Advanced Engineering Materials, 2016, 18, 1189-1199.	3.5	21
39	Hybrid image processing approach for autonomous crack area detection and tracking using local digital image correlation results applied to single-fiber interfacial debonding. Engineering Fracture Mechanics, 2019, 216, 106485.	4.3	21
40	An efficient and robust monolithic approach to phase-field quasi-static brittle fracture using a modified Newton method. Computer Methods in Applied Mechanics and Engineering, 2021, 386, 114091.	6.6	20
41	Direct-Dispense Polymeric Waveguides Platform for Optical Chemical Sensors. Sensors, 2008, 8, 7636-7648.	3.8	19
42	Fused filament fabrication of PVDF films for piezoelectric sensing and energy harvesting applications. Materials Advances, 2022, 3, 4851-4860.	5.4	18
43	Experimental Study of Current Collection in Single-Chamber Micro Solid Oxide Fuel Cells with Comblike Electrodes. Journal of the Electrochemical Society, 2008, 155, B994.	2.9	17
44	Residual mechanical properties of a carbon fibers/PEEK space robotic arm after simulated orbital debris impact. International Journal of Impact Engineering, 2015, 84, 78-87.	5.0	16
45	Single-chamber micro solid oxide fuel cells: Study of anode and cathode materials in coplanar electrode design. Solid State Ionics, 2010, 181, 332-337.	2.7	15
46	Spiderweb-Inspired, Transparent, Impact-Absorbing Composite. Cell Reports Physical Science, 2020, 1, 100240.	5.6	14
47	Structural and photoluminescence properties of laser processed ZnO/carbon nanotube nanohybrids. Journal of Materials Research, 2009, 24, 3313-3320.	2.6	13
48	Model Approach for Binder Selection in Binder Jetting. Industrial & Engineering Chemistry Research, 2021, 60, 15162-15173.	3.7	13
49	Fabrication and testing of coplanar single-chamber micro solid oxide fuel cells with geometrically complex electrodes. Journal of Power Sources, 2008, 177, 148-153.	7.8	12
50	Miniaturization limits for single-chamber micro-solid oxide fuel cells with coplanar electrodes. Journal of Power Sources, 2009, 194, 941-949.	7.8	12
51	Micro-infiltration of three-dimensional porous networks with carbon nanotube-based nanocomposite for material design. Composites Part A: Applied Science and Manufacturing, 2011, 42, 1910-1919.	7.6	12
52	High-frequency electromagnetic properties of epitaxial Bi2FeCrO6 thin films grown by pulsed laser deposition. Applied Physics Letters, 2011, 99, 183505.	3.3	12
53	Electric field induced alignment of multiwalled carbon nanotubes in polymers and multiscale composites. Advanced Manufacturing: Polymer and Composites Science, 2015, 1, 16-25.	0.4	12
54	Multi-scale modeling of distortion in the non-flat 3D woven composite part manufactured using resin transfer molding. Composites Part A: Applied Science and Manufacturing, 2021, 140, 106145.	7.6	11

#	Article	lF	CITATIONS
55	Advances in Coaxial Additive Manufacturing and Applications. Advanced Materials Technologies, 2021, 6, 2100356.	5.8	11
56	Selective area synthesis of aligned carbon nanofibers by laser-assisted catalytic chemical vapor deposition. Diamond and Related Materials, 2007, 16, 1541-1549.	3.9	10
57	Continuous and selective-area coating of silver on fiber-reinforced polymer composites for aerospace applications. Materials Today Communications, 2019, 18, 206-212.	1.9	10
58	Hybrid Carbon–Silver Nanofillers for Composite Coatings with Near Metallic Electrical Conductivity. Advanced Engineering Materials, 2018, 20, 1800541.	3.5	8
59	Filling the gap. Nature Nanotechnology, 2007, 2, 393-394.	31.5	7
60	Laser-assisted synthesis of carbon nanofibers: From arrays to thin films and coatings. Surface and Coatings Technology, 2008, 202, 2661-2669.	4.8	6
61	Fast synthesis of ZnO nanostructures by laser-induced chemical liquid deposition. Applied Surface Science, 2009, 255, 5359-5362.	6.1	5
62	3D Printing: Solventâ€Cast Threeâ€Dimensional Printing of Multifunctional Microsystems (Small 24/2013). Small, 2013, 9, 4090-4090.	10.0	5
63	Toughening elastomers via microstructured thermoplastic fibers with sacrificial bonds and hidden lengths. Extreme Mechanics Letters, 2021, 43, 101208.	4.1	5
64	Physicochemical Limitations of Capillary Models Applied to High-Concentration Polymer Solutions. ACS Omega, 2022, 7, 5636-5645.	3.5	5
65	Failure mechanisms of coiling fibers with sacrificial bonds made by instability-assisted fused deposition modeling. Soft Matter, 2018, 14, 9777-9785.	2.7	4
66	Design of thermoset composites for high-speed additive manufacturing of lightweight soundÂabsorbing micro-scaffolds. Additive Manufacturing, 2021, 47, 102245.	3.0	4
67	Experimentally validated modeling of the temperature distribution and the distortion during the Fused Filament Fabrication process. Additive Manufacturing, 2022, 54, 102693.	3.0	4
68	Multiâ€Material, Multiâ€Process, Planar, and Nonplanar Additive Manufacturing of Piezoelectric Devices. Advanced Engineering Materials, 2022, 24, .	3.5	4
69	Influence of solution parameters for the fast growth of ZnO nanostructures by laser-induced chemical liquid deposition. Applied Physics A: Materials Science and Processing, 2009, 94, 819-829.	2.3	3
70	Manufacturing of Three-dimensionally Microstructured Nanocomposites through Microfluidic Infiltration. Journal of Visualized Experiments, 2014, , .	0.3	3
71	Liquid Materials: 3D Printing of Highly Conductive Nanocomposites for the Functional Optimization of Liquid Sensors (Small 44/2016). Small, 2016, 12, 6176-6176.	10.0	3
72	High-speed multinozzle additive manufacturing and extrusion modeling of large-scale microscaffold networks. Additive Manufacturing, 2021, 47, 102294.	3.0	3

#	Article	IF	CITATIONS
73	Viscoelastic Inks for Direct-Write Microfabrication of Single-Chamber Micro Solid Oxide Fuel Cells with Coplanar Thick Electrodes. Materials Research Society Symposia Proceedings, 2009, 1179, 51.	0.1	2
74	CMOS-Based Capacitive Sensor Array Dedicated to Microfluidic Studies. , 2006, , .		1
75	Direct-Write Microfabrication of Single-Chamber Solid Oxide Fuel Cells with Interdigitated Electrodes. Materials Research Society Symposia Proceedings, 2006, 972, 1.	0.1	1
76	Microstructured Fibers: Instabilityâ€Assisted Direct Writing of Microstructured Fibers Featuring Sacrificial Bonds (Adv. Mater. 24/2015). Advanced Materials, 2015, 27, 3708-3708.	21.0	1
77	Photoluminescence quenching, structures, and photovoltaic properties of ZnO nanostructures decorated plasma grown single walled carbon nanotubes. Journal of Nanoparticle Research, 2017, 19, 1.	1.9	1
78	Microstructural and Mechanical Properties of Polyester/Nanoclay Nanocomposites: Microstructure-Mixing Strategy Correlation. Materials Research Society Symposia Proceedings, 2011, 1312, 1.	0.1	0