Ola M Fincke

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4528967/publications.pdf Version: 2024-02-01

OLA M FINCKE

#	Article	IF	CITATIONS
1	Negative body sizeâ€dependent resource allocation underlies conspicuous sexual ornaments in a territorial damselfly. Journal of Evolutionary Biology, 2022, 35, 288-298.	1.7	1
2	Tests of search image and learning in the wild: Insights from sexual conflict in damselflies. Ecology and Evolution, 2021, 11, 4399-4412.	1.9	3
3	Field tests of multiple sensory cues in sex recognition and harassment of a colour polymorphic damselfly. Animal Behaviour, 2018, 136, 127-136.	1.9	12
4	Role of visual and non-visual cues in damselfly mate recognition. International Journal of Odonatology, 2017, 20, 43-52.	0.5	8
5	Mechanical and tactile incompatibilities cause reproductive isolation between two young damselfly species. Evolution; International Journal of Organic Evolution, 2017, 71, 2410-2427.	2.3	36
6	For consistency's sake? A reply to Bybee <i>et al.</i> . Systematic Entomology, 2016, 41, 307-308.	3.9	10
7	Tradeâ€offs in female signal apparency to males offer alternative antiâ€harassment strategies for colour polymorphic females. Journal of Evolutionary Biology, 2015, 28, 931-943.	1.7	19
8	Ultraviolet wing signal affects territorial contest outcome in a sexually dimorphic damselfly. Animal Behaviour, 2015, 101, 67-74.	1.9	26
9	Melanic individuals in color polymorphic <i>Enallagma</i> damselflies result from phenotypic, not genetic, variation. International Journal of Odonatology, 2015, 18, 3-14.	0.5	5
10	Selective use of multiple cues by males reflects a decision rule for sex discrimination in a sexually mimetic damselfly. Animal Behaviour, 2014, 92, 9-18.	1.9	22
11	Still a one species genus? Strong genetic diversification in the world's largest living odonate, the Neotropical damselfly Megaloprepus caerulatus. Conservation Genetics, 2014, 15, 469-481.	1.5	19
12	Use of stable isotopes to assess the intraspecific foraging niche of males and female colour morphs of the damselfly <i>Enallagma hageni</i> . Ecological Entomology, 2014, 39, 109-117.	2.2	6
13	Lost in the crowd or hidden in the grass: signal apparency of female polymorphic damselflies in alternative habitats. Animal Behaviour, 2013, 86, 923-931.	1.9	27
14	Reciprocal Effects between Burying Behavior of a Larval Dragonfly (Odonata: Macromia illinoiensis) and Zebra Mussel Colonization. Journal of Insect Behavior, 2012, 25, 554-568.	0.7	2
15	Effects of zebra mussel attachment on the foraging behaviour of a larval dragonfly, Macromia illinoiensis. Ecological Entomology, 2011, 36, 760-767.	2.2	5
16	Tests of the harassment-reduction function and frequency-dependent maintenance of a female-specific color polymorphism in a damselfly. Behavioral Ecology and Sociobiology, 2011, 65, 1215-1227.	1.4	24
17	Excess offspring as a maternal strategy: constraints in the shared nursery of a giant damselfly. Behavioral Ecology, 2011, 22, 543-551.	2.2	5
18	Susceptibility of larval dragonflies to zebra mussel colonization and its effect on larval movement and survivorship. Hydrobiologia, 2009, 624, 71-79.	2.0	9

Ola M Fincke

#	Article	IF	CITATIONS
19	Structural colours create a flashing cue for sexual recognition and male quality in a Neotropical giant damselfly. Functional Ecology, 2009, 23, 724-732.	3.6	70
20	Differences in forest use and colonization by Neotropical treeâ€hole damselflies (Odonata:) Tj ETQq0 0 0 rgBT /O Environment, 2008, 43, 35-45.	verlock 10 1.0) Tf 50 707 ⁻ 12
21	Lack of innate preference for morph and species identity in mate-searching Enallagma damselflies. Behavioral Ecology and Sociobiology, 2007, 61, 1121-1131.	1.4	72
22	Tree hole odonates as environmental monitors: Non-invasive isolation of polymorphic microsatellites from the neotropical damselflyMegaloprepus caerulatus. Conservation Genetics, 2005, 6, 481-483.	1.5	18
23	The evolution and frequency of female color morphs in Holarctic Odonata: why are male-like females typically the minority?. International Journal of Odonatology, 2005, 8, 183-212.	0.5	93
24	Mistakes in sexual recognition among sympatric Zygoptera vary with time of day and color morphism (Odonata: Coenagrionidae). International Journal of Odonatology, 2004, 7, 471-491.	0.5	21
25	Polymorphic signals of harassed female odonates and the males that learn them support a novel frequency-dependent model. Animal Behaviour, 2004, 67, 833-845.	1.9	89
26	Body size and fitness in Odonata, stabilising selection and a meta-analysis too far?. Ecological Entomology, 2002, 27, 378-384.	2.2	42
27	UNPREDICTABLE OFFSPRING SURVIVORSHIP IN THE DAMSELFLY, MEGALOPREPUS COERULATUS, SHAPES PARENTAL BEHAVIOR, CONSTRAINS SEXUAL SELECTION, AND CHALLENGES TRADITIONAL FITNESS ESTIMATES. Evolution; International Journal of Organic Evolution, 2001, 55, 762.	2.3	66
28	UNPREDICTABLE OFFSPRING SURVIVORSHIP IN THE DAMSELFLY, MEGALOPREPUS COERULATUS, SHAPES PARENTAL BEHAVIOR, CONSTRAINS SEXUAL SELECTION, AND CHALLENGES TRADITIONAL FITNESS ESTIMATES. Evolution; International Journal of Organic Evolution, 2001, 55, 762-772.	2.3	8
29	Title is missing!. Journal of Insect Behavior, 1999, 12, 801-814.	0.7	117
30	Organization of predator assemblages in Neotropical tree holes: effects of abiotic factors and priority. Ecological Entomology, 1999, 24, 13-23.	2.2	79
31	Natural and sexual selection components of odonate mating patterns. , 1997, , 58-74.		38
32	Conflict resolution in the Odonata: implications for understanding female mating patterns and female choice. Biological Journal of the Linnean Society, 1997, 60, 201-220.	1.6	81
33	Predation by odonates depresses mosquito abundance in water-filled tree holes in Panama. Oecologia, 1997, 112, 244-253.	2.0	87
34	Conflict resolution in the Odonata: implications for understanding female mating patterns and female choice. Biological Journal of the Linnean Society, 1997, 60, 201-220.	1.6	7
35	Larval behaviour of a giant damselfly: territoriality or size-dependent dominance?. Animal Behaviour, 1996, 51, 77-87.	1.9	8
36	Population regulation of a tropical damselfly in the larval stage by food limitation, cannibalism, intraguild predation and habitat drying. Oecologia, 1994, 100-100, 118-127.	2.0	97

OLA M FINCKE

#	Article	IF	CITATIONS
37	On the difficulty of detecting density?dependent selection on polymorphic females of the damselflyIschnura graellsii: Failure to reject the null. Evolutionary Ecology, 1994, 8, 328-329.	1.2	15
38	Female colour polymorphism in damselflies: failure to reject the null hypothesis. Animal Behaviour, 1994, 47, 1249-1266.	1.9	91
39	Interspecific Competition for Tree Holes: Consequences for Mating Systems and Coexistence in Neotropical Damselflies. American Naturalist, 1992, 139, 80-101.	2.1	74
40	Consequences of Larval Ecology for Territoriality and Reproductive Success of a Neotropical Damselfly. Ecology, 1992, 73, 449-462.	3.2	67
41	Lifetime Reproductive Success and the Opportunity for Selection in a Nonterritorial Damselfly (Odonata: Coenagrionidae). Evolution; International Journal of Organic Evolution, 1986, 40, 791.	2.3	35
42	LIFETIME REPRODUCTIVE SUCCESS AND THE OPPORTUNITY FOR SELECTION IN A NONTERRITORIAL DAMSELFLY (ODONATA: COENAGRIONIDAE). Evolution; International Journal of Organic Evolution, 1986, 40, 791-803.	2.3	56
43	Underwater oviposition in a damselfly (Odonata: Coenagrionidae) favors male vigilance, and multiple mating by females. Behavioral Ecology and Sociobiology, 1986, 18, 405-412.	1.4	62
44	Alternative mate-finding tactics in a non-territorial damselfly (Odonata: Coenagrionidae). Animal Behaviour, 1985, 33, 1124-1137.	1.9	38
45	Sperm competition in the damselfly Enallagma hageni Walsh (Odonata: Coenagrionidae): benefits of multiple mating to males and females. Behavioral Ecology and Sociobiology, 1984, 14, 235-240.	1.4	94

Lifetime mating success in a natural population of the damselfly, Enallagma hageni (Walsh) (Odonata:) Tj ETQq0 0 0 rgBT /Overlock 10 -

47	Tests of hypotheses for morphological and genetic divergence in Megaloprepus damselflies across Neotropical forests. Biological Journal of the Linnean Society, 0, , .	1.6	2
48	To harass or to respect: the economy of male persistence despite female refusal in a damselfly with scramble mate competition. International Journal of Odonatology, 0, 25, 7-15.	0.5	2