Gilles Allali

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4528810/publications.pdf

Version: 2024-02-01

202

all docs

191 6,760 41 papers citations h-index

202

docs citations

h-index g-index

202 7179
times ranked citing authors

71

#	Article	IF	Citations
1	Cerebrovascular Complications and Vessel Wall Imaging in COVID-19 Encephalopathy—AÂPilotÂStudy. Clinical Neuroradiology, 2022, 32, 287-293.	1.0	21
2	Functional mobility in older women with and without motoric cognitive risk syndrome: a quantitative assessment using wearable inertial sensors. Journal of Gerontology and Geriatrics, 2022, 70, 1-8.	0.2	1
3	Decrease in pain perception during acute SARS-CoV-2 infection: a case series. Pain, 2022, 163, 1019-1022.	2.0	3
4	Answer to Letter to the Editor: High-resolution Black Blood Vessel Wall Imaging in COVID-19 Encephalopathy—is it Really Endotheliitis?. Clinical Neuroradiology, 2022, 32, 297-298.	1.0	4
5	Frailty, e-health and prevention of late-onset Alzheimer disease and related disorders: it is time to take action. Aging Clinical and Experimental Research, 2022, , 1.	1.4	1
6	Oneâ€year persistent symptoms and functional impairment in SARS oVâ€2 positive and negative individuals. Journal of Internal Medicine, 2022, 292, 103-115.	2.7	26
7	Long COVID Neuropsychological Deficits after Severe, Moderate, or Mild Infection. Clinical and Translational Neuroscience, 2022, 6, 9.	0.4	24
8	Functional connectivity underlying cognitive and psychiatric symptoms in post-COVID-19 syndrome: is anosognosia a key determinant?. Brain Communications, 2022, 4, fcac057.	1.5	35
9	The prevention of major neurocognitive disorders in the next phase of COVID-19 pandemic: On being proactive. Maturitas, 2022, 162, 67-68.	1.0	2
10	The Biological Substrate of the Motoric Cognitive Risk Syndrome: A Pilot Study Using Amyloid-/Tau-PET and MR Imaging. Journal of Alzheimer's Disease, 2022, , 1-8.	1.2	2
11	"Emergency Room Evaluation and Recommendations―and Incident Hospital Admissions in Older People with Major Neurocognitive Disorders Visiting Emergency Department: Results of an Experimental Study. Dementia and Geriatric Cognitive Disorders, 2022, 51, 291-296.	0.7	1
12	CARE frailty e-health scale: Association with incident adverse health outcomes and comparison with the Cardiovascular Health Study frailty scale in the NuAge cohort. Maturitas, 2022, 162, 37-43.	1.0	4
13	Motoric cognitive risk syndrome and incident dementia in older adults from the Québec NuAge cohort. Age and Ageing, 2021, 50, 969-973.	0.7	10
14	Can the radiological scale "iNPH Radscale―predict tap test response in idiopathic normal pressure hydrocephalus?. Journal of the Neurological Sciences, 2021, 420, 117239.	0.3	12
15	Dynamic functional networks in idiopathic normal pressure hydrocephalus: Alterations and reversibility by CSF tap test. Human Brain Mapping, 2021, 42, 1485-1502.	1.9	15
16	Normal pressure hydrocephalus and CSF tap test response: the gait phenotype matters. Journal of Neural Transmission, 2021, 128, 121-125.	1.4	10
17	Longitudinal Timed Up and Go Assessment in Amyotrophic Lateral Sclerosis: A Pilot Study. European Neurology, 2021, 84, 375-379.	0.6	1
18	Diagnostic value of amyloid-PET and tau-PET: a head-to-head comparison. European Journal of Nuclear Medicine and Molecular Imaging, 2021, 48, 2200-2211.	3.3	19

#	Article	IF	Citations
19	Motoric cognitive risk syndrome: what's new?. Aging, 2021, 13, 7711-7712.	1.4	5
20	Pre-Dementia Stages and Incident Dementia in the NuAge Study. Journal of Alzheimer's Disease, 2021, 80, 1465-1470.	1.2	4
21	COVIDâ€19 encephalopathy: Clinical and neurobiological features. Journal of Medical Virology, 2021, 93, 4374-4381.	2.5	32
22	Cortical Thickness, Volume, and Surface Area in the Motoric Cognitive Risk Syndrome. Journal of Alzheimer's Disease, 2021, 81, 651-665.	1.2	16
23	Myoclonus and Cerebellar Ataxia Associated with SARS-CoV-2 Infection: Case Report and Review of the Literature. European Journal of Case Reports in Internal Medicine, 2021, 8, 002531.	0.2	3
24	COVID-19 associated stroke and cerebral endotheliitis. Journal of Neuroradiology, 2021, 48, 291-292.	0.6	4
25	Breathlessness and COVID-19: A Call for Research. Respiration, 2021, 100, 1016-1026.	1.2	24
26	Does Endothelial Vulnerability in OSA Syndrome Promote COVID-19 Encephalopathy?. Chest, 2021, 160, e161-e164.	0.4	6
27	Alzheimer's Disease Biomarkers in Idiopathic Normal Pressure Hydrocephalus: Linking Functional Connectivity and Clinical Outcome. Journal of Alzheimer's Disease, 2021, 83, 1-12.	1.2	8
28	Late-Life Depressive Symptomatology, Motoric Cognitive Risk Syndrome, and Incident Dementia: The "NuAge―Study Results. Frontiers in Aging Neuroscience, 2021, 13, 740181.	1.7	4
29	C-reactive protein and white matter microstructural changes in COVID-19 patients with encephalopathy. Journal of Neural Transmission, 2021, 128, 1899-1906.	1.4	8
30	Beyond silent hypoxemia: Does COVIDâ€19 can blunt pain perception? Comment on "The neuroinvasive potential of SARS CoV2 may play a role in the respiratory failure of COVID 19 patients†Journal of Medical Virology, 2021, 93, 1915-1916.	2.5	3
31	Vitamin D Supplementation and Cognition in Adults: A Systematic Review of Randomized Controlled Trials. CNS Drugs, 2021, 35, 1249-1264.	2.7	14
32	"Emergency Room Evaluation and Recommendations―(ER2) Tool for the Screening of Older Emergency Department Visitors With Major Neurocognitive Disorders: Results From the ER2 Database. Frontiers in Neurology, 2021, 12, 767285.	1.1	5
33	Default mode network and the timed up and go in MCI: A structural covariance analysis. Experimental Gerontology, 2020, 129, 110748.	1.2	5
34	Motoric cognitive risk syndrome and incident dementia: results from a populationâ€based prospective and observational cohort study. European Journal of Neurology, 2020, 27, 468-474.	1.7	18
35	Serum neurofilament light chains in MS. Neurology: Neuroimmunology and NeuroInflammation, 2020, 7, e895.	3.1	1
36	Smoothness of Gait in Healthy and Cognitively Impaired Individuals: A Study on Italian Elderly Using Wearable Inertial Sensor. Sensors, 2020, 20, 3577.	2.1	21

#	Article	IF	CITATIONS
37	Gait speed is associated with death or readmission among patients surviving acute hypercapnic respiratory failure. BMJ Open Respiratory Research, 2020, 7, e000542.	1.2	2
38	Can dual-task paradigms predict Falls better than single task? $\hat{a}\in$ A systematic literature review. Neurophysiologie Clinique, 2020, 50, 401-440.	1.0	30
39	Hypoxemia in COVIDâ€19; Comment on: "The neuroinvasive potential of SARSâ€CoV2 may play a role in the respiratory failure of COVIDâ€19 patientsâ€. Journal of Medical Virology, 2020, 92, 1705-1706.	2.5	28
40	Experimental dyspnoea interferes with locomotion and cognition: a randomised trial. European Respiratory Journal, 2020, 56, 2000054.	3.1	9
41	Commentary: Prevalence of Alternative Diagnoses and Implications for Management in Idiopathic Normal Pressure Hydrocephalus Patients. Neurosurgery, 2020, 87, E545-E546.	0.6	1
42	Relationship between motoric cognitive risk syndrome, cardiovascular risk factors and diseases, and incident cognitive impairment: Results from the "NuAge―study. Maturitas, 2020, 138, 51-57.	1.0	11
43	Dyspnea: The vanished warning symptom of COVIDâ€19 pneumonia. Journal of Medical Virology, 2020, 92, 2272-2273.	2.5	32
44	Parkinsonian gait in aging: A feature of Alzheimer's pathology?. Experimental Gerontology, 2020, 134, 110905.	1.2	2
45	Neural circuits of idiopathic Normal Pressure Hydrocephalus: A perspective review of brain connectivity and symptoms meta-analysis. Neuroscience and Biobehavioral Reviews, 2020, 112, 452-471.	2.9	12
46	Reader response: Cerebrospinal fluid dynamics disorders: Relationship to Alzheimer biomarkers and cognition. Neurology, 2020, 95, 845-846.	1.5	0
47	Brain Structure Covariance Associated With Gait Control in Aging. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2019, 74, 705-713.	1.7	41
48	A Gray Matter Volume Covariance Network Associated with the Motoric Cognitive Risk Syndrome: A Multicohort MRI Study. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2019, 74, 884-889.	1.7	53
49	Motoric cognitive risk syndrome and cardiovascular diseases and risk factors in the Canadian population: Results from the baseline assessment of the Canadian longitudinal study on aging. Archives of Gerontology and Geriatrics, 2019, 85, 103932.	1.4	15
50	Deconstructing or reestablishing frontal gait in normal pressure hydrocephalus?. Journal of the Neurological Sciences, 2019, 404, 66-67.	0.3	0
51	Education level affects dual-task gait after deep brain stimulation in Parkinson's disease. Parkinsonism and Related Disorders, 2019, 68, 65-68.	1.1	5
52	The association of anxio-depressive disorders and depression with motoric cognitive risk syndrome: results from the baseline assessment of the Canadian longitudinal study on aging. GeroScience, 2019, 41, 409-418.	2.1	28
53	Neural substrates of reduced walking activity after supratentorial stroke: A voxel-based lesion symptom mapping study. Human Movement Science, 2019, 67, 102517.	0.6	1
54	Multiple facets of the cerebellum in multiple sclerosis. Journal of Neurophysiology, 2019, 121, 345-345.	0.9	0

#	Article	IF	Citations
55	Is frontal gait a myth in normal pressure hydrocephalus?. Journal of the Neurological Sciences, 2019, 402, 175-179.	0.3	19
56	Structural Brain Volume Covariance Associated with Gait Speed in Patients with Amnestic and Non-Amnestic Mild Cognitive Impairment: A Double Dissociation. Journal of Alzheimer's Disease, 2019, 71, S29-S39.	1.2	17
57	Motoric Cognitive Risk Syndrome and Risk for Falls, Their Recurrence, and Postfall Fractures: Results From a Prospective Observational Population-Based Cohort Study. Journal of the American Medical Directors Association, 2019, 20, 1268-1273.	1.2	27
58	Brain gray matter volume associations with gait speed and related structural covariance networks in cognitively healthy individuals and in patients with mild cognitive impairment: A cross-sectional study. Experimental Gerontology, 2019, 122, 116-122.	1.2	13
59	The effects of dual tasks on gait in children with cerebral palsy. Gait and Posture, 2019, 70, 148-155.	0.6	18
60	Motoric cognitive risk syndrome, incident cognitive impairment and morphological brain abnormalities: Systematic review and meta-analysis. Maturitas, 2019, 123, 45-54.	1.0	38
61	Effects of Vitamin D and Calcium Fortified Yogurts on Gait, Cognitive Performances, and Serum 25-Hydroxyvitamin D Concentrations in Older Community-Dwelling Females: Results from the GAit, MEmory, Dietary and Vitamin D (GAME-D2) Randomized Controlled Trial. Nutrients, 2019, 11, 2880.	1.7	24
62	Motoric cognitive risk syndrome and mortality: results from the EPIDOS cohort. European Journal of Neurology, 2019, 26, 794.	1.7	24
63	Association of hippocampal volume with gait variability in pre-dementia and dementia stages of Alzheimer disease: Results from a cross-sectional study. Experimental Gerontology, 2019, 115, 55-61.	1.2	29
64	Does executive functioning contribute to locomotion in amyotrophic lateral sclerosis patients?. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2019, 20, 123-125.	1.1	1
65	Gray matter volume covariance patterns associated with gait speed in older adults: a multi-cohort MRI study. Brain Imaging and Behavior, 2019, 13, 446-460.	1.1	38
66	Brain Gray Matter Volume Associations With Abnormal Gait Imagery in Patients With Mild Cognitive Impairment: Results of a Cross-Sectional Study. Frontiers in Aging Neuroscience, 2019, 11, 364.	1.7	4
67	Physical Activity in Older Adults With Mild Parkinsonian Signs: A Cohort Study. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2018, 73, 1682-1687.	1.7	10
68	Cerebellum and cognition in multiple sclerosis: the fall status matters. Journal of Neurology, 2018, 265, 809-816.	1.8	11
69	Apathy in idiopathic normal pressure hydrocephalus: A marker of reversible gait disorders. International Journal of Geriatric Psychiatry, 2018, 33, 735-742.	1.3	8
70	From swing to cane: Sex differences of EEG resting-state temporal patterns during maturation and aging. Developmental Cognitive Neuroscience, 2018, 31, 58-66.	1.9	95
71	Cognitive-motor dual-task interference modulates mediolateral dynamic stability during gait in post-stroke individuals. Human Movement Science, 2018, 58, 175-184.	0.6	27
72	Brain comorbidities in normal pressure hydrocephalus. European Journal of Neurology, 2018, 25, 542-548.	1.7	30

#	Article	IF	Citations
73	Parkinsonism is a Phenotypical Signature of Amyloidopathy in Patients with Gait Disorders. Journal of Alzheimer's Disease, 2018, 63, 1373-1381.	1.2	3
74	Editorial: The Contribution of Postural Adjustments to Body Balance and Motor Performance. Frontiers in Human Neuroscience, 2018, 12, 487.	1.0	13
75	Brain imaging of locomotion in neurological conditions. Neurophysiologie Clinique, 2018, 48, 337-359.	1.0	40
76	Dopaminergic imaging separates normal pressure hydrocephalus from its mimics. Journal of Neurology, 2018, 265, 2434-2441.	1.8	14
77	Neural correlates of gait variability in people with multiple sclerosis with fall history. European Journal of Neurology, 2018, 25, 1243-1249.	1.7	13
78	Association of Motoric Cognitive Risk Syndrome with Cardiovascular Disease and Risk Factors: Results from an Original Study and Meta-Analysis. Journal of Alzheimer's Disease, 2018, 64, 875-887.	1.2	33
79	Age and gender differences in motor imagery. Journal of the Neurological Sciences, 2018, 391, 114-117.	0.3	16
80	The relationship between depression, anxiety and cognition and its paradoxical impact on falls in multiple sclerosis patients. Multiple Sclerosis and Related Disorders, 2018, 25, 167-172.	0.9	18
81	Brain comorbidities in normal pressure hydrocephalus. European Journal of Neurology, 2018, 25, e94.	1.7	2
82	Spatiotemporal Gait Characteristics Associated with Cognitive Impairment: A Multicenter Cross-Sectional Study, the Intercontinental "Gait, cOgnitiOn & Decline―Initiative. Current Alzheimer Research, 2018, 15, 273-282.	0.7	35
83	Body position and motor imagery strategy effects on imagining gait in healthy adults: Results from a cross-sectional study. PLoS ONE, 2018, 13, e0191513.	1.1	4
84	Motoric Cognitive Risk Syndrome: Could It Be Defined Through Increased Five-Times-Sit-to-Stand Test Time, Rather Than Slow Walking Speed?. Frontiers in Aging Neuroscience, 2018, 10, 434.	1.7	13
85	Postural control is associated with cognition and fear of falling in patients with multiple sclerosis. Journal of Neural Transmission, 2017, 124, 495-500.	1.4	14
86	The spectrum of preâ€dementia stages: cognitive profile of motoric cognitive risk syndrome and relationship with mild cognitive impairment. European Journal of Neurology, 2017, 24, 1047-1054.	1.7	30
87	Upper limb movement analysis during gait in multiple sclerosis patients. Human Movement Science, 2017, 54, 248-252.	0.6	13
88	A combined cognitive and gait quantification to identify normal pressure hydrocephalus from its mimics: The Geneva's protocol. Clinical Neurology and Neurosurgery, 2017, 160, 5-11.	0.6	38
89	Cognitive status, fast walking speed and walking speed reserveâ€"the Gait and Alzheimer Interactions Tracking (GAIT) study. GeroScience, 2017, 39, 231-239.	2.1	71
90	Falls, Cognitive Impairment, and Gait Performance: Results From the GOOD Initiative. Journal of the American Medical Directors Association, 2017, 18, 335-340.	1.2	119

#	Article	IF	Citations
91	An exploratory cohort study of sensory extinction in acute stroke: prevalence, risk factors, and time course. Journal of Neural Transmission, 2017, 124, 483-494.	1.4	9
92	Apathy and higher level of gait control in normal pressure hydrocephalus. International Journal of Psychophysiology, 2017, 119, 127-131.	0.5	15
93	Association of increased gait variability while dual tasking and cognitive decline: results from a prospective longitudinal cohort pilot study. GeroScience, 2017, 39, 439-445.	2.1	31
94	Management of Gait Changes and Fall Risk in MCI and Dementia. Current Treatment Options in Neurology, 2017, 19, 29.	0.7	31
95	Gait and cognitive impairments in multiple sclerosis: the specific contribution of falls and fear of falling. Journal of Neural Transmission, 2017, 124, 1407-1416.	1.4	24
96	CSF tapping also improves mental imagery of gait in normal pressure hydrocephalus. Journal of Neural Transmission, 2017, 124, 1401-1405.	1.4	1
97	Does fear of falling predict gait variability in multiple sclerosis?. Journal of the Neurological Sciences, 2017, 380, 212-214.	0.3	6
98	The interacting effects of treadmill walking and different types of visuospatial cognitive task: Discriminating dual task and age effects. Archives of Gerontology and Geriatrics, 2017, 73, 50-59.	1.4	14
99	Added Value of Combined Semi-Quantitative and Visual [1231]FP-CIT SPECT Analyses for the Diagnosis of Dementia With Lewy Bodies. Clinical Nuclear Medicine, 2017, 42, e96-e102.	0.7	26
100	Gait stability in patients treated by fingolimod: A longitudinal pilot study on 9 patients with multiple sclerosis. Journal of the Neurological Sciences, 2017, 383, 105-107.	0.3	1
101	The role of postural instability/gait difficulty and fear of falling in predicting falls in non-demented older adults. Archives of Gerontology and Geriatrics, 2017, 69, 15-20.	1.4	33
102	Gait Profile Score in multiple sclerosis patients with low disability. Gait and Posture, 2017, 51, 169-173.	0.6	17
103	Association Between Falls and Brain Subvolumes: Results from a Cross-Sectional Analysis in Healthy Older Adults. Brain Topography, 2017, 30, 272-280.	0.8	14
104	Guidelines for Assessment of Gait and Reference Values for Spatiotemporal Gait Parameters in Older Adults: The Biomathics and Canadian Gait Consortiums Initiative. Frontiers in Human Neuroscience, 2017, 11, 353.	1.0	116
105	Subjective Memory Impairment andÂGaitÂVariability in Cognitively Healthy Individuals: Results from a Cross-Sectional Pilot Study. Journal of Alzheimer's Disease, 2016, 55, 965-971.	1.2	11
106	Cerebral Small Vessel Disease and Motoric Cognitive Risk Syndrome: Results from the Kerala-Einstein Study. Journal of Alzheimer's Disease, 2016, 50, 699-707.	1.2	47
107	Parkinsonism Differentiates Idiopathic Normal Pressure Hydrocephalus from Its Mimics. Journal of Alzheimer's Disease, 2016, 54, 123-127.	1.2	10
108	Falling in the elderly: Do statistical models matter for performance criteria of fall prediction? Results from two large population-based studies. European Journal of Internal Medicine, 2016, 27, 48-56.	1.0	17

#	Article	IF	Citations
109	Stride time variability as a marker for higher level of gait control in multiple sclerosis: its association with fear of falling. Journal of Neural Transmission, 2016, 123, 595-599.	1.4	15
110	Anti-Dementia Drugs, Gait Performance and Mental Imagery of Gait: A Non-Randomized Open-Label Trial. Drugs and Aging, 2016, 33, 665-673.	1.3	5
111	Gait phenotype from mild cognitive impairment to moderate dementia: results from the <scp>GOOD</scp> initiative. European Journal of Neurology, 2016, 23, 527-541.	1.7	111
112	Times are changing; researchers need to change too. European Journal of Neurology, 2016, 23, e10-e10.	1.7	1
113	Gait variability in multiple sclerosis: a better falls predictor than EDSS in patients with low disability. Journal of Neural Transmission, 2016, 123, 447-450.	1.4	32
114	Decrease in Upright Postural Sway from Open to Closed Eyes: Episodic Memory Impairment Matters, Too. Journal of the American Geriatrics Society, 2016, 64, 1142-1144.	1.3	4
115	The role of prefrontal cortex during postural control in Parkinsonian syndromes a functional near-infrared spectroscopy study. Brain Research, 2016, 1633, 126-138.	1.1	52
116	Motoric Cognitive Risk Syndrome Subtypes and Cognitive Profiles. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2016, 71, 378-384.	1.7	74
117	Gait Performance and Use of Mental Imagery as a Measure of Disease Progression in Amyotrophic Lateral Sclerosis. European Neurology, 2016, 75, 109-112.	0.6	5
118	Poor Gait Performance and Prediction of Dementia: Results From aÂMeta-Analysis. Journal of the American Medical Directors Association, 2016, 17, 482-490.	1.2	206
119	The relationship between hippocampal volume and static postural sway: results from the GAIT study. Age, 2016, 38, 19.	3.0	15
120	Modifiable Risk Factors for New-Onset Slow Gait in Older Adults. Journal of the American Medical Directors Association, 2016, 17, 421-425.	1.2	29
121	Association of Motoric Cognitive Risk Syndrome With Brain Volumes: Results From the GAIT Study. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2016, 71, 1081-1088.	1.7	58
122	Incidence, Risk Factors and Anatomy of Peripersonal Visuospatial Neglect in Acute Stroke. European Neurology, 2016, 75, 157-163.	0.6	15
123	Brain volume changes in gait control in patients with mild cognitive impairment compared to cognitively healthy individuals; GAIT study results. Experimental Gerontology, 2016, 76, 72-79.	1.2	33
124	Neurological Gait Abnormalities Moderate the Functional Brain Signature of the Posture First Hypothesis. Brain Topography, 2016, 29, 334-343.	0.8	83
125	When Breathing Interferes with Cognition: Experimental Inspiratory Loading Alters Timed Up-and-Go Test in Normal Humans. PLoS ONE, 2016, 11, e0151625.	1.1	36
126	White Matter Hyperintensities in Older Adults and Motoric Cognitive Risk Syndrome. Journal of Neuroimaging in Psychiatry & Neurology, 2016, 1, 73-78.	0.4	15

#	Article	IF	Citations
127	Improvement in executive subfunctions following cerebrospinal fluid tap test identifies idiopathic normal pressure hydrocephalus from its mimics. European Journal of Neurology, 2015, 22, 1533-1539.	1.7	15
128	Multiple modes of assessment of gait are better than one to predict incident falls. Archives of Gerontology and Geriatrics, 2015, 60, 389-393.	1.4	16
129	Dopaminergic denervation is not necessary to induce gait disorders in atypical parkinsonian syndrome. Journal of the Neurological Sciences, 2015, 351, 127-132.	0.3	6
130	Motor imagery of gait in non-demented older community-dwellers: performance depends on serum 25-hydroxyvitamin D concentrations. Age, 2015, 37, 18.	3.0	6
131	Episodic memory and executive function impairments in non-demented older adults: which are the respective and combined effects on gait performances?. Age, 2015, 37, 9812.	3.0	18
132	Hippocampal volume, early cognitive decline and gait variability: Which association?. Experimental Gerontology, 2015, 61, 98-104.	1.2	57
133	Respective and Combined Effects of Impairments in Sensorimotor Systems and Cognition on Gait Performance: A Population-Based Cross-Sectional Study. PLoS ONE, 2015, 10, e0125102.	1.1	7
134	Anti-dementia drugs-related changes in gait performance while single and dual tasking in patients with Alzheimer disease: a meta-analysis. Current Alzheimer Research, 2015, 12, 761-771.	0.7	17
135	Gait abnormalities in obstructive sleep apnea and impact of continuous positive airway pressure. Respiratory Physiology and Neurobiology, 2014, 201, 31-33.	0.7	22
136	Dual-Task Assessment in Natalizumab-Treated Multiple Sclerosis Patients. European Neurology, 2014, 71, 247-251.	0.6	18
137	The influence of individual motor imagery ability on cerebral recruitment during gait imagery. Human Brain Mapping, 2014, 35, 455-470.	1.9	89
138	Gait control and executive dysfunction in early schizophrenia. Journal of Neural Transmission, 2014, 121, 443-450.	1.4	18
139	The Neural Basis of Age-Related Changes in Motor Imagery of Gait: An fMRI Study. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2014, 69, 1389-1398.	1.7	108
140	Changes in Gait Variability with Anti-dementia Drugs: A Systematic Review and Meta-analysis. CNS Drugs, 2014, 28, 513-518.	2.7	19
141	Contributions of mild parkinsonian signs to gait performance in the elderly. Age, 2014, 36, 9678.	3.0	15
142	Motor imagery of gait: a new way to detect mild cognitive impairment?. Journal of NeuroEngineering and Rehabilitation, 2014, 11, 66.	2.4	25
143	The evolution of mild parkinsonian signs in aging. Journal of Neurology, 2014, 261, 1922-1928.	1.8	26
144	Walking while talking in patients with multiple sclerosis: The impact of specific cognitive loads. Neurophysiologie Clinique, 2014, 44, 87-93.	1.0	55

#	Article	IF	Citations
145	Gait Changes with Anti-Dementia Drugs: A Prospective, Open-Label Study Combining Single and Dual Task Assessments in Patients with Alzheimer's Disease. Drugs and Aging, 2014, 31, 363-372.	1.3	22
146	Motor Phenotype of Decline in Cognitive Performance among Community-Dwellers without Dementia: Population-Based Study and Meta-Analysis. PLoS ONE, 2014, 9, e99318.	1.1	64
147	Gait variability at fast-pace walking speed: A biomarker of mild cognitive impairment?. Journal of Nutrition, Health and Aging, 2013, 17, 235-239.	1.5	107
148	Association between dual task-related decrease in walking speed and real versus imagined Timed Up and Go test performance. Aging Clinical and Experimental Research, 2013, 25, 283-289.	1.4	23
149	Dual-task related gait changes after CSF tapping: a new way to identify idiopathic normal pressure hydrocephalus. Journal of NeuroEngineering and Rehabilitation, 2013, 10, 117.	2.4	35
150	Derivation and validation of a Short Form of the <scp>M</scp> iniâ€ <scp>M</scp> ental <scp>S</scp> tate <scp>E</scp> xamination for the screening of dementia in older adults with a memory complaint. European Journal of Neurology, 2013, 20, 588-590.	1.7	20
151	Blood pressure levels and brain volume reduction. Journal of Hypertension, 2013, 31, 1502-1516.	0.3	143
152	Contribution of Brain Imaging to the Understanding Of Gait Disorders in Alzheimer's Disease. American Journal of Alzheimer's Disease and Other Dementias, 2012, 27, 371-380.	0.9	47
153	Adapted Timed Up and Go: A Rapid Clinical Test to Assess Gait and Cognition in Multiple Sclerosis. European Neurology, 2012, 67, 116-120.	0.6	37
154	Gait and motor imagery of gait in early schizophrenia. Psychiatry Research, 2012, 198, 366-370.	1.7	24
155	Effects of amygdala–hippocampal stimulation on interictal epileptic discharges. Epilepsy Research, 2012, 99, 87-93.	0.8	35
156	Vitamin D insufficiency and mild cognitive impairment: crossâ€sectional association. European Journal of Neurology, 2012, 19, 1023-1029.	1.7	71
157	Gait control: a specific subdomain of executive function?. Journal of NeuroEngineering and Rehabilitation, 2012, 9, 12.	2.4	100
158	Interest of dual-task-related gait changes in idiopathic normal pressure hydrocephalus. European Journal of Neurology, 2011, 18, 1081-1084.	1.7	27
159	Association Between High Variability of Gait Speed and Mild Cognitive Impairment: A Crossâ€6ectional Pilot Study. Journal of the American Geriatrics Society, 2011, 59, 1973-1974.	1.3	29
160	Does Memantine Improve the Gait of Individuals with Alzheimer's Disease?. Journal of the American Geriatrics Society, 2011, 59, 2181-2182.	1.3	28
161	Timed up and go test and risk of falls in older adults: A systematic review. Journal of Nutrition, Health and Aging, 2011, 15, 933-938.	1.5	285
162	Development of a short form of Mini-Mental State Examination for the screening of dementia in older adults with a memory complaint: a case control study. BMC Geriatrics, 2011, 11, 59.	1.1	30

#	Article	IF	Citations
163	Test-retest reliability of stride time variability while dual tasking in healthy and demented adults with frontotemporal degeneration. Journal of NeuroEngineering and Rehabilitation, 2011, 8, 37.	2.4	43
164	Biology of gait control. Neurology, 2011, 76, 1617-1622.	1.5	47
165	Decrease in gait variability while counting backward: a marker of "magnet effect�. Journal of Neural Transmission, 2010, 117, 1171-1176.	1.4	20
166	Poor creativity in frontotemporal dementia: A window into the neural bases of the creative mind. Neuropsychologia, 2010, 48, 3733-3742.	0.7	103
167	Frontotemporal dementia: Pathology of gait?. Movement Disorders, 2010, 25, 731-737.	2.2	56
168	Antiepileptic drugs modify power of high EEG frequencies and their neural generators. European Journal of Neurology, 2010, 17, 1308-1312.	1.7	34
169	EFFECT OF PSYCHOACTIVE MEDICATION ON GAIT VARIABILITY IN COMMUNITYâ€DWELLING OLDER ADULTS: A CROSSâ€6ECTIONAL STUDY. Journal of the American Geriatrics Society, 2010, 58, 1207-1208.	1.3	6
170	Association of vitamin D deficiency with cognitive impairment in older women. Neurology, 2010, 74, 27-32.	1.5	182
171	Imagined Timed Up & Dest: A new tool to assess higher-level gait and balance disorders in older adults?. Journal of the Neurological Sciences, 2010, 294, 102-106.	0.3	99
172	Walking speed-related changes in stride time variability: effects of decreased speed. Journal of NeuroEngineering and Rehabilitation, 2009, 6, 32.	2.4	122
173	Stops walking when talking: a predictor of falls in older adults?. European Journal of Neurology, 2009, 16, 786-795.	1.7	324
174	Vitamin D and cognitive performance in adults: a systematic review. European Journal of Neurology, 2009, 16, 1083-1089.	1.7	205
175	Gait Variability among Healthy Adults: Low and High Stride-to-Stride Variability Are Both a Reflection of Gait Stability. Gerontology, 2009, 55, 702-706.	1.4	153
176	Dual Task–Related Changes in Gait Performance in Older Adults: A New Way of Predicting Recurrent Falls?. Journal of the American Geriatrics Society, 2008, 56, 181-182.	1.3	27
177	GALANTAMINE IMPROVES GAIT PERFORMANCE IN PATIENTS WITH ALZHEIMER'S DISEASE. Journal of the American Geriatrics Society, 2008, 56, 946-947.	1.3	62
178	Recurrent Falls and Dual Task–Related Decrease in Walking Speed: Is There a Relationship?. Journal of the American Geriatrics Society, 2008, 56, 1265-1269.	1.3	128
179	Frontal Assessment Battery is a marker of dorsolateral and medial frontal functions: A SPECT study in frontotemporal dementia. Journal of the Neurological Sciences, 2008, 273, 84-87.	0.3	71
180	Concurrent validity of SMTEC \hat{A}^{\otimes} footswitches system for the measurement of temporal gait parameters. Gait and Posture, 2008, 27, 156-159.	0.6	60

#	Article	IF	CITATIONS
181	Does Change in Gait while Counting Backward Predict the Occurrence of a First Fall in Older Adults?. Gerontology, 2008, 54, 217-223.	1.4	61
182	Impact of Impaired Executive Function on Gait Stability. Dementia and Geriatric Cognitive Disorders, 2008, 26, 364-369.	0.7	103
183	Gait analysis in demented subjects: Interests and perspectives. Neuropsychiatric Disease and Treatment, 2008, 4, 155.	1.0	155
184	La maladie d'Alzheimer : perspectives thérapeutiques. Bulletin De L'Academie Nationale De Medecine, 2008, 192, 333-344.	0.0	1
185	'Faster counting while walking' as a predictor of falls in older adults. Age and Ageing, 2007, 36, 418-423.	0.7	81
186	Mild clinical expression of Lambert Eaton myasthenic syndrome in a patient with HIV infection. Journal of Neurology, Neurosurgery and Psychiatry, 2007, 78, 910-911.	0.9	0
187	Changes in gait while backward counting in demented older adults with frontal lobe dysfunction. Gait and Posture, 2007, 26, 572-576.	0.6	108
188	Is low lower-limb kinematic variability always an index of stability?. Gait and Posture, 2007, 26, 327-328.	0.6	28
189	Myasthenia gravis associated with HTLV-I infection and atypical brain lesions. Muscle and Nerve, 2007, 35, 525-528.	1.0	11
190	LONG-TERM PRACTICE OF JAQUES-DALCROZE EURHYTHMICS PREVENTS AGE-RELATED INCREASE OF GAIT VARIABILITY UNDER A DUAL TASK. Journal of the American Geriatrics Society, 2005, 53, 728-729.	1.3	26
191	CSF tap test in idiopathic normal pressure hydrocephalus: still a necessary prognostic test?. Journal of Neurology, 0, , .	1.8	O