
David W Everett

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/45287/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Variation in milk fat globule size and composition: A source of bioactives for human health. Critical Reviews in Food Science and Nutrition, 2023, 63, 87-113.	10.3	24
2	The bovine milk fat globule membrane – Liquid ordered domain formation and anticholesteremic effects during digestion. Food Reviews International, 2023, 39, 4061-4087.	8.4	1
3	Kinetics of pepsin-induced hydrolysis and the coagulation of milk proteins. Journal of Dairy Science, 2022, 105, 990-1003.	3.4	19
4	Cholesterol-phospholipid interactions resist the detergent effect of bovine bile. Colloids and Surfaces B: Biointerfaces, 2021, 205, 111842.	5.0	3
5	Cheese proteolysis and matrix disintegration during in vitro digestion. Food Structure, 2019, 21, 100114.	4.5	9
6	Polar lipid composition of the milk fat globule membrane in buttermilk made using various cream churning conditions or isolated from commercial samples. International Dairy Journal, 2018, 81, 138-142.	3.0	13
7	Microbiological and enzymatic activity of bovine whole milk treated by pulsed electric fields. International Journal of Dairy Technology, 2018, 71, 10-19.	2.8	34
8	Addition of milk to tea infusions: Helpful or harmful? Evidence from <i>in vitro</i> and <i>in vivo</i> studies on antioxidant properties. Critical Reviews in Food Science and Nutrition, 2017, 57, 3188-3196.	10.3	36
9	Impact of different milk fat globule membrane preparations on protein composition, xanthine oxidase activity, and redox potential. International Dairy Journal, 2017, 64, 14-21.	3.0	13
10	Molecular interactions between green tea catechins and cheese fat studied by solid-state nuclear magnetic resonance spectroscopy. Food Chemistry, 2017, 215, 228-234.	8.2	19
11	Cheese Microstructure 1. , 2017, , 547-569.		8
12	Effects of (+)-Catechin on the Composition, Phenolic Content and Antioxidant Activity of Full-Fat Cheese during Ripening and Recovery of (+)-Catechin after Simulated In Vitro Digestion. Antioxidants, 2016, 5, 29.	5.1	16
13	A novel functional full-fat hard cheese containing liposomal nanoencapsulated green tea catechins: manufacture and recovery following simulated digestion. Food and Function, 2016, 7, 3283-3294.	4.6	32
14	Effect of liposomal encapsulation on the recovery and antioxidant properties of green tea catechins incorporated into a hard low-fat cheese following in vitro simulated gastrointestinal digestion. Food and Bioproducts Processing, 2016, 100, 238-245.	3.6	41
15	The behaviour of green tea catechins in a full-fat milk system under conditions mimicking the cheesemaking process. International Journal of Food Sciences and Nutrition, 2016, 67, 624-631.	2.8	9
16	Thermal properties of milk fat, xanthine oxidase, caseins and whey proteins in pulsed electric field-treated bovine whole milk. Food Chemistry, 2016, 207, 34-42.	8.2	53
17	Antioxidant activity and recovery of green tea catechins in full-fat cheese following gastrointestinal simulated digestion. Journal of Food Composition and Analysis, 2016, 48, 13-24.	3.9	44
18	The impact of cream churning conditions on xanthine oxidase activity and oxidation–reduction potential in model emulsion systems. International Dairy Journal, 2016, 60, 55-61.	3.0	5

DAVID W EVERETT

#	Article	IF	CITATIONS
19	Green tea catechins suppress xanthine oxidase activity in dairy products: An improved HPLC analysis. Journal of Food Composition and Analysis, 2016, 48, 120-127.	3.9	15
20	Interactions between milk fat globules and green tea catechins. Food Chemistry, 2016, 199, 347-355.	8.2	25
21	Interfacial properties and transmission electron microscopy revealing damage to the milk fat globule system after pulsed electric field treatment. Food Hydrocolloids, 2015, 47, 99-107.	10.7	34
22	Total phenolic content and antioxidant properties of hard low-fat cheese fortified with catechin as affected by inÂvitro gastrointestinal digestion. LWT - Food Science and Technology, 2015, 62, 393-399.	5.2	39
23	Formulation of oil-in-water β-carotene microemulsions: Effect of oil type and fatty acid chain length. Food Chemistry, 2015, 174, 270-278.	8.2	84
24	Capacity of natural β-carotene loaded microemulsion to protect Caco-2 cells from oxidative damage caused by exposure to H2O2. Food Research International, 2014, 66, 469-477.	6.2	17
25	Emulsifying Properties of Legume Proteins Compared to βâ€Lactoglobulin and Tween 20 and the Volatile Release from Oilâ€inâ€Water Emulsions. Journal of Food Science, 2014, 79, E2014-22.	3.1	50
26	Effect of pulsed electric field processing on the functional properties of bovine milk. Trends in Food Science and Technology, 2014, 35, 87-101.	15.1	57
27	Delivery of green tea catechin and epigallocatechin gallate in liposomes incorporated into low-fat hard cheese. Food Chemistry, 2014, 156, 176-183.	8.2	160
28	Bacterial inactivation in whole milk using pulsed electric field processing. International Dairy Journal, 2014, 35, 49-56.	3.0	100
29	Lateral lipid organization of the bovine milk fat globule membrane is revealed by washing processes. Journal of Dairy Science, 2014, 97, 5964-5974.	3.4	36
30	Effect of pulsed electric field processing on carotenoid extractability of carrot purée. International Journal of Food Science and Technology, 2014, 49, 2120-2127.	2.7	81
31	Phospholipid Architecture of the Bovine Milk Fat Globule Membrane Using Giant Unilamellar Vesicles as a Model. Journal of Agricultural and Food Chemistry, 2014, 62, 3236-3243.	5.2	19
32	Reduction of bacterial counts and inactivation of enzymes in bovine whole milk using pulsed electric fields. International Dairy Journal, 2014, 39, 146-156.	3.0	61
33	Evaluating the Effectiveness of β-Carotene Extraction from Pulsed Electric Field-Treated Carrot Pomace Using Oil-in-Water Microemulsion. Food and Bioprocess Technology, 2014, 7, 3336-3348.	4.7	52
34	Oxidation of aldehydes by xanthine oxidase located on the surface of emulsions and washed milk fat globules. International Dairy Journal, 2014, 37, 117-126.	3.0	14
35	Effects of catechin on the phenolic content and antioxidant properties of lowâ€fat cheese. International Journal of Food Science and Technology, 2013, 48, 2448-2455.	2.7	81
36	Volatile release and structural stability of β-lactoglobulin primary and multilayer emulsions under simulated oral conditions. Food Chemistry, 2013, 140, 124-134.	8.2	33

DAVID W EVERETT

#	Article	IF	CITATIONS
37	Innovative application of confocal Raman microscopy to investigate the interaction between trans-2-hexenal and bovine milk fat globules. International Dairy Journal, 2013, 32, 68-70.	3.0	6
38	Bovine Milk Fat Globule Membrane Proteins Are Affected By Centrifugal Washing Processes. Journal of Agricultural and Food Chemistry, 2013, 61, 8403-8411.	5.2	43
39	Development of a model mouth containing an artificial tongue to measure the release of volatile compounds. Innovative Food Science and Emerging Technologies, 2012, 15, 96-103.	5.6	20
40	β-Casein–phospholipid monolayers as model systems to understand lipid–protein interactions in the milk fat globule membrane. International Dairy Journal, 2012, 22, 58-65.	3.0	37
41	Effect of pectin adsorption on the hydrophobic binding sites of Î ² -lactoglobulin in solution and in emulsion systems. International Dairy Journal, 2012, 26, 36-40.	3.0	21
42	Tongue Pressure and Oral Conditions Affect Volatile Release from Liquid Systems in a Model Mouth. Journal of Agricultural and Food Chemistry, 2012, 60, 9918-9927.	5.2	16
43	Multilayer emulsions as delivery systems for controlled release of volatile compounds using pH and salt triggers. Food Hydrocolloids, 2012, 27, 109-118.	10.7	91
44	Static headspace analysis of volatile compounds released from β-lactoglobulin-stabilized emulsions determined by the phase ratio variation method. Food Research International, 2011, 44, 417-424.	6.2	19
45	Composition of bovine milk fat globules by confocal Raman microscopy. International Dairy Journal, 2011, 21, 402-412.	3.0	88
46	Composition and Fatty Acid Distribution of Bovine Milk Phospholipids from Processed Milk Products. Journal of Agricultural and Food Chemistry, 2010, 58, 10503-10511.	5.2	94
47	Surface Characterization of Bovine Milk Phospholipid Monolayers by Langmuir Isotherms and Microscopic Techniques. Journal of Agricultural and Food Chemistry, 2010, 58, 12275-12285.	5.2	47
48	Using Confocal Laser Scanning Microscopy To Probe the Milk Fat Globule Membrane and Associated Proteins. Journal of Agricultural and Food Chemistry, 2010, 58, 4250-4257.	5.2	174
49	Neoliberalism and the academic as critic and conscience of society. Teaching in Higher Education, 2010, 15, 85-96.	2.6	33
50	Cheese structure and current methods of analysis. International Dairy Journal, 2008, 18, 759-773.	3.0	123
51	Interactions of polysaccharide stabilisers with casein aggregates in stirred skim-milk yoghurt. International Dairy Journal, 2005, 15, 1175-1183.	3.0	185
52	Salt-induced structural changes in 1-day old Mozzarella cheese and the impact upon free oil formation. International Dairy Journal, 2004, 14, 809-816.	3.0	38
53	Salt-induced structural changes in Mozzarella cheese and the impact upon free oil formation in ripening cheese. Dairy Science and Technology, 2004, 84, 539-549.	0.9	17
54	Adsorption of κ-casein onto native milk fat globule, latex particle, and emulsion surfaces. Food Hydrocolloids, 2003, 17, 529-537.	10.7	11

DAVID W EVERETT

#	Article	IF	CITATIONS
55	The Effect of Compression, Stretching, and Cooking Temperature on Free Oil Formation in Mozzarella Curd. Journal of Dairy Science, 2003, 86, 449-456.	3.4	37
56	The Effect of Homogenization and Milk Fat Fractions on the Functionality of Mozzarella Cheese. Journal of Dairy Science, 2003, 86, 712-718.	3.4	52
57	Free Oil and Rheology of Cheddar Cheese Containing Fat Globules Stabilized with Different Proteins. Journal of Dairy Science, 2003, 86, 755-763.	3.4	38
58	Dynamic Rheology of Renneted Milk Gels Containing Fat Globules Stabilized with Different Surfactants. Journal of Dairy Science, 2000, 83, 1203-1209.	3.4	22
59	Applications of Confocal Microscopy to Fat Globule Structure in Cheese. Advances in Experimental Medicine and Biology, 1995, 367, 321-330.	1.6	15
60	Microstructure of Natural Cheeses. , 0, , 170-209.		8
61	Cream Products. , 0, , 725-749.		0