Martin Volwerk

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4528648/publications.pdf

Version: 2024-02-01

174 papers

6,859 citations

43 h-index 74018 75 g-index

204 all docs

204 docs citations

times ranked

204

2850 citing authors

#	Article	IF	Citations
1	Cometary plasma science. Experimental Astronomy, 2022, 54, 1129-1167.	1.6	3
2	Multi-scale observations of the magnetopause Kelvin–Helmholtz waves during southward IMF. Physics of Plasmas, 2022, 29, .	0.7	12
3	Making Waves: Mirror Mode Structures Around Mars Observed by the MAVEN Spacecraft. Journal of Geophysical Research: Space Physics, 2022, 127, .	0.8	5
4	A Fast Bow Shock Location Predictorâ€Estimator From 2D and 3D Analytical Models: Application to Mars and the MAVEN Mission. Journal of Geophysical Research: Space Physics, 2022, 127, .	0.8	6
5	Electronâ€Scale Current Sheet as the Boundary of a Linear Magnetic Hole in the Terrestrial Current Sheet Observed by the Magnetospheric Multiscale Mission. Journal of Geophysical Research: Space Physics, 2022, 127, .	0.8	5
6	LatHyS global hybrid simulation of the BepiColombo second Venus flyby. Planetary and Space Science, 2022, 218, 105499.	0.9	2
7	BepiColombo Science Investigations During Cruise and Flybys at the Earth, Venus and Mercury. Space Science Reviews, 2021, 217, 1.	3.7	25
8	Statistical study of linear magnetic hole structures near Earth. Annales Geophysicae, 2021, 39, 239-253.	0.6	16
9	First Observations of an Ion Vortex in a Magnetic Hole in the Solar Wind by MMS. Astronomical Journal, 2021, 161, 110.	1.9	14
10	Pickâ€Up Ion Cyclotron Waves Around Mercury. Geophysical Research Letters, 2021, 48, e2021GL092606.	1.5	8
11	The BepiColombo Planetary Magnetometer MPO-MAG: What Can We Learn from the Hermean Magnetic Field?. Space Science Reviews, 2021, 217, 1.	3.7	45
12	Fieldâ€Aligned Currents Originating From the Chaotic Motion of Electrons in the Tilted Current Sheet: MMS Observations. Geophysical Research Letters, 2021, 48, e2020GL088841.	1.5	7
13	Magnetic Holes in the Solar Wind and Magnetosheath Near Mercury. Journal of Geophysical Research: Space Physics, 2021, 126, e2020JA028961.	0.8	18
14	Solar Orbiter's first Venus flyby: Observations from the Radio and Plasma Wave instrument. Astronomy and Astrophysics, 2021, 656, A18.	2.1	14
15	Magnetosheath plasma flow model around Mercury. Annales Geophysicae, 2021, 39, 563-570.	0.6	4
16	Electron-scale Magnetic Peaks Upstream of the Terrestrial Bow Shock Observed by the Magnetospheric Multiscale Mission. Astrophysical Journal, 2021, 914, 101.	1.6	7
17	Foreshock as a Source Region of Electron-scale Magnetic Holes in the Solar Wind at 1 au. Astrophysical Journal, 2021, 915, 3.	1.6	11
18	Venus's induced magnetosphere during active solar wind conditions at BepiColombo's Venus 1 flyby. Annales Geophysicae, 2021, 39, 811-831.	0.6	3

#	Article	IF	CITATIONS
19	A Study of the Solar Wind Ion and Electron Measurements From the Magnetospheric Multiscale Mission's Fast Plasma Investigation. Journal of Geophysical Research: Space Physics, 2021, 126, e2021JA029784.	0.8	7
20	Statistical Properties of Electron-scale Magnetic Peaks in the Solar Wind at 1 au. Astrophysical Journal, 2021, 921, 152.	1.6	4
21	Statistical Study of Small-scale Magnetic Holes in the Upstream Regime of the Martian Bow Shock. Astrophysical Journal, 2021, 921, 153.	1.6	6
22	Statistical Properties of Subâ€ion Magnetic Holes in the Solar Wind at 1ÂAU. Journal of Geophysical Research: Space Physics, 2020, 125, e2020JA028320.	0.8	18
23	Study of the Electron Velocity Inside Subâ€lonâ€Scale Magnetic Holes in the Solar Wind by MMS Observations. Journal of Geophysical Research: Space Physics, 2020, 125, e2020JA028386.	0.8	15
24	The BepiColombo–Mio Magnetometer en Route to Mercury. Space Science Reviews, 2020, 216, 1.	3.7	19
25	Joint Europa Mission (JEM): a multi-scale study of Europa to characterize its habitability and search for extant life. Planetary and Space Science, 2020, 193, 104960.	0.9	15
26	Roles of electrons and ions in formation of the current in mirror-mode structures in the terrestrial plasma sheet: Magnetospheric Multiscale observations. Annales Geophysicae, 2020, 38, 309-318.	0.6	15
27	On the magnetic characteristics of magnetic holes in the solar wind between Mercury and Venus. Annales Geophysicae, 2020, 38, 51-60.	0.6	26
28	Three-dimensional Geometry of the Electron-scale Magnetic Hole in the Solar Wind. Astrophysical Journal Letters, 2020, 904, L11.	3.0	15
29	Magnetometer in-flight offset accuracy for the BepiColombo spacecraft. Annales Geophysicae, 2020, 38, 823-832.	0.6	7
30	Unusually high magnetic fields in the coma of 67P/Churyumov-Gerasimenko during its high-activity phase. Astronomy and Astrophysics, 2019, 630, A38.	2.1	10
31	A Statistical Study on the Properties of Dips Ahead of Dipolarization Fronts Observed by MMS. Journal of Geophysical Research: Space Physics, 2019, 124, 139-150.	0.8	20
32	Oscillatory Flows in the Magnetotail Plasma Sheet: Cluster Observations of the Distribution Function. Journal of Geophysical Research: Space Physics, 2019, 124, 2736-2754.	0.8	1
33	Properties of the singing comet waves in the 67P/Churyumov-Gerasimenko plasma environment as observed by the Rosetta mission. Astronomy and Astrophysics, 2019, 630, A39.	2.1	14
34	Oxygen Ion Flow Reversals in Earth's Magnetotail: A Cluster Statistical Study. Journal of Geophysical Research: Space Physics, 2019, 124, 8928-8942.	0.8	0
35	Solar wind charge exchange in cometary atmospheres. Astronomy and Astrophysics, 2019, 630, A37.	2.1	21
36	Dipolarization Fronts: Tangential Discontinuities? On the Spatial Range of Validity of the MHD Jump Conditions. Journal of Geophysical Research: Space Physics, 2019, 124, 9963-9975.	0.8	10

#	Article	IF	Citations
37	Solar Wind Directional Change Triggering Flapping Motions of the Current Sheet: MMS Observations. Geophysical Research Letters, 2019, 46, 64-70.	1.5	25
38	Dynamic field line draping at comet 67P/Churyumov-Gerasimenko during the Rosetta dayside excursion. Astronomy and Astrophysics, 2019, 630, A44.	2.1	4
39	On the location of the lo plasma torus: VoyagerÂ1 observations. Annales Geophysicae, 2018, 36, 831-839.	0.6	3
40	First observations of magnetic holes deep within the coma of a comet. Astronomy and Astrophysics, 2018, 618, A114.	2.1	24
41	A tail like no other. Astronomy and Astrophysics, 2018, 614, A10.	2.1	10
42	Highâ€latitude Pi2 pulsations associated with kinkâ€like neutral sheet oscillations. Journal of Geophysical Research: Space Physics, 2017, 122, 2889-2899.	0.8	17
43	Current sheets in comet 67P/Churyumovâ€Gerasimenko's coma. Journal of Geophysical Research: Space Physics, 2017, 122, 3308-3321.	0.8	11
44	Fluxgate magnetometer offset vector determination by the 3D mirror mode method. Monthly Notices of the Royal Astronomical Society, 2017, 469, S675-S684.	1.6	17
45	Evolution of the magnetic field at comet 67P/Churyumov–Gerasimenko. Monthly Notices of the Royal Astronomical Society, 2017, 469, S268-S275.	1.6	32
46	Hybrid Simulations of Positively and Negatively Charged Pickup Ions and Cyclotron Wave Generation at Europa. Journal of Geophysical Research: Space Physics, 2017, 122, 10408-10420.	0.8	12
47	The distribution of oscillation frequency of magnetic field and plasma parameters in BBFs: THEMIS statistics. Journal of Geophysical Research: Space Physics, 2017, 122, 4325-4334.	0.8	2
48	Electron-Scale Quadrants of the Hall Magnetic Field Observed by the Magnetospheric Multiscale spacecraft during Asymmetric Reconnection. Physical Review Letters, 2017, 118, 175101.	2.9	64
49	Lowâ€frequency oscillatory flow signatures and highâ€speed flows in the Earth's magnetotail. Journal of Geophysical Research: Space Physics, 2017, 122, 7042-7056.	0.8	8
50	Asymmetries in the Magnetosheath Field Draping on Venus' Nightside. Journal of Geophysical Research: Space Physics, 2017, 122, 10,396.	0.8	8
51	Occurrence rate of dipolarization fronts in the plasma sheet: Cluster observations. Annales Geophysicae, 2017, 35, 1015-1022.	0.6	6
52	Mass-loading, pile-up, and mirror-mode waves at comet 67P/Churyumov-Gerasimenko. Annales Geophysicae, 2016, 34, 1-15.	0.6	46
53	Two-point observations of low-frequency waves at 67P/Churyumov-Gerasimenko during the descent of PHILAE: comparison of RPCMAG and ROMAP. Annales Geophysicae, 2016, 34, 609-622.	0.6	34
54	RPC observation of the development and evolution of plasma interaction boundaries at 67P/Churyumov-Gerasimenko. Monthly Notices of the Royal Astronomical Society, 2016, 462, S9-S22.	1.6	62

#	Article	lF	Citations
55	First detection of a diamagnetic cavity at comet 67P/Churyumov-Gerasimenko. Astronomy and Astrophysics, 2016, 588, A24.	2.1	95
56	The distribution of spectral index of magnetic field and ion velocity in Pi2 frequency band in BBFs: THEMIS statistics. Advances in Space Research, 2016, 58, 847-855.	1.2	2
57	Mirror mode structures ahead of dipolarization front near the neutral sheet observed by Cluster. Geophysical Research Letters, 2016, 43, 8853-8858.	1.5	28
58	Current sheet flapping motions in the tailward flow of magnetic reconnection. Journal of Geophysical Research: Space Physics, 2016, 121, 7817-7827.	0.8	11
59	Statistical study on ultralowâ€frequency waves in the magnetotail lobe observed by Cluster. Journal of Geophysical Research: Space Physics, 2016, 121, 5319-5332.	0.8	6
60	A comparative study of dipolarization fronts at MMS and Cluster. Geophysical Research Letters, 2016, 43, 6012-6019.	1.5	37
61	CME impact on comet 67P/Churyumov-Gerasimenko. Monthly Notices of the Royal Astronomical Society, 2016, 462, S45-S56.	1.6	42
62	Structure and evolution of the diamagnetic cavity at comet 67P/Churyumov–Gerasimenko. Monthly Notices of the Royal Astronomical Society, 2016, 462, S459-S467.	1.6	79
63	Cassini in situ observations of long-duration magnetic reconnection in Saturn's magnetotail. Nature Physics, 2016, 12, 268-271.	6.5	35
64	Mirror mode waves in Venus's magnetosheath: solar minimum vs. solar maximum. Annales Geophysicae, 2016, 34, 1099-1108.	0.6	29
65	Two states of magnetotail dipolarization fronts: A statistical study. Journal of Geophysical Research: Space Physics, 2015, 120, 1096-1108.	0.8	29
66	Spatial distribution of lowâ€energy plasma around comet 67P/CG from Rosetta measurements. Geophysical Research Letters, 2015, 42, 4263-4269.	1.5	74
67	Atmospheric Drag, Occultation †N†lonospheric Scintillation (ADONIS) mission proposal. Journal of Space Weather and Space Climate, 2015, 5, A2.	1.1	0
68	Observation of a new type of low-frequency waves at comet 67P/Churyumov-Gerasimenko. Annales Geophysicae, 2015, 33, 1031-1036.	0.6	66
69	In situ observations of multistage electron acceleration driven by magnetic reconnection. Journal of Geophysical Research: Space Physics, 2015, 120, 6320-6331.	0.8	28
70	Evolution of the ion environment of comet 67P/Churyumov-Gerasimenko. Astronomy and Astrophysics, 2015, 583, A20.	2.1	76
71	Upstream proton cyclotron waves at Venus near solar maximum. Journal of Geophysical Research: Space Physics, 2015, 120, 344-354.	0.8	30
72	Birth of a comet magnetosphere: A spring of water ions. Science, 2015, 347, aaa0571.	6.0	107

#	Article	IF	CITATIONS
73	A statistical analysis of Pi2â€band waves in the plasma sheet and their relation to magnetospheric drivers. Journal of Geophysical Research: Space Physics, 2015, 120, 6167-6175.	0.8	21
74	Mirror mode structures near Venus and Comet P/Halley. Annales Geophysicae, 2014, 32, 651-657.	0.6	33
75	A comparison between VEGA 1, 2 and Giotto flybys of comet 1P/Halley: implications for Rosetta. Annales Geophysicae, 2014, 32, 1441-1453.	0.6	16
76	Observation of double layer in the separatrix region during magnetic reconnection. Geophysical Research Letters, 2014, 41, 4851-4858.	1.5	48
77	Large-Scale Structure and Dynamics of the Magnetotails of Mercury, Earth, Jupiter and Saturn. Space Science Reviews, 2014, 182, 85-154.	3.7	41
78	Magnetic pileup boundary and field draping at Comet Halley. Planetary and Space Science, 2014, 96, 125-132.	0.9	7
79	Neptune and Triton: Essential pieces of the Solar System puzzle. Planetary and Space Science, 2014, 104, 108-121.	0.9	34
80	Flapping current sheet with superposed waves seen in space and on the ground. Journal of Geophysical Research: Space Physics, 2014, 119, 10,078.	0.8	22
81	The proton temperature anisotropy associated with bursty bulk flows in the magnetotail. Journal of Geophysical Research: Space Physics, 2013, 118, 4875-4883.	0.8	12
82	A statistical study of electron acceleration behind the dipolarization fronts in the magnetotail. Journal of Geophysical Research: Space Physics, 2013, 118, 4804-4810.	0.8	74
83	Comparative magnetotail flapping: an overview of selected events at Earth, Jupiter and Saturn. Annales Geophysicae, 2013, 31, 817-833.	0.6	32
84	ULF waves in Ganymede's upstream magnetosphere. Annales Geophysicae, 2013, 31, 45-59.	0.6	6
85	Threeâ€dimensional magnetic flux rope structure formed by multiple sequential Xâ€ine reconnection at the magnetopause. Journal of Geophysical Research: Space Physics, 2013, 118, 1904-1911.	0.8	48
86	Observation of multiple subâ€cavities adjacent to single separatrix. Geophysical Research Letters, 2013, 40, 2511-2517.	1.5	27
87	Flow bouncing and electron injection observed by Cluster. Journal of Geophysical Research: Space Physics, 2013, 118, 2055-2072.	0.8	38
88	Ion cyclotron waves during the Rosetta approach phase: a magnetic estimate of cometary outgassing. Annales Geophysicae, 2013, 31, 2201-2206.	0.6	6
89	Corrigendum to "Ion cyclotron waves during the Rosetta approach phase: a magnetic estimate of cometary outgassing" published in Ann. Geophys., 31, 2201–2206, 2013. Annales Geophysicae, 2013, 31, 2213-2213.	0.6	2
90	Spatial distribution of rolled up Kelvin-Helmholtz vortices at Earth's dayside and flank magnetopause. Annales Geophysicae, 2012, 30, 1025-1035.	0.6	59

#	Article	IF	Citations
91	Proton cyclotron wave generation mechanisms upstream of Venus. Journal of Geophysical Research, 2011, 116, n/a-n/a.	3.3	26
92	Fast tailward flows in the plasma sheet boundary layer during a substorm on 9 March 2008: THEMIS observations. Journal of Geophysical Research, 2011, 116, .	3.3	25
93	Magnetopause reconnection across wide local time. Annales Geophysicae, 2011, 29, 1683-1697.	0.6	57
94	A statistical and event study of magnetotail dipolarization fronts. Annales Geophysicae, 2011, 29, 1537-1547.	0.6	128
95	Interplanetary magnetic field rotations followed from L1 to the ground: the response of the Earth's magnetosphere as seen by multi-spacecraft and ground-based observations. Annales Geophysicae, 2011, 29, 1549-1569.	0.6	7
96	Is current disruption associated with an inverse cascade?. Nonlinear Processes in Geophysics, 2010, 17, 287-292.	0.6	4
97	Corrigendum to "Substorm activity in Venus's magnetotail" published in Ann. Geophys., 27, 2321–2330, doi:10.5194/angeo-27-2321-2009, 2009. Annales Geophysicae, 2010, 28, 1877-1878.	0.6	5
98	lon pick-up near the icy Galilean satellites. , 2010, , .		6
99	Multiple overshoot and rebound of a bursty bulk flow. Geophysical Research Letters, 2010, 37, .	1.5	153
100	Statistical study of lowâ€frequency magnetic field fluctuations near Venus under the different interplanetary magnetic field orientations. Journal of Geophysical Research, 2010, 115, .	3.3	16
101	Plasma sheet thickness during a bursty bulk flow reversal. Journal of Geophysical Research, 2010, 115, .	3.3	60
102	Cluster and Double Star multipoint observations of a plasma bubble. Annales Geophysicae, 2009, 27, 725-743.	0.6	54
103	Substorm activity in Venus's magnetotail. Annales Geophysicae, 2009, 27, 2321-2330.	0.6	18
104	Mirror waves and mode transition observed in the magnetosheath by Double Star TC-1. Annales Geophysicae, 2009, 27, 351-355.	0.6	4
105	Observations of plasma vortices in the vicinity of flow-braking: a case study. Annales Geophysicae, 2009, 27, 3009-3017.	0.6	28
106	Evolution of dipolarization in the near-Earth current sheet induced by Earthward rapid flux transport. Annales Geophysicae, 2009, 27, 1743-1754.	0.6	129
107	Magnetosheath fluctuations at Venus for two extreme orientations of the interplanetary magnetic field. Geophysical Research Letters, 2009, 36, .	1.5	14
108	Mirror mode structures in the solar wind at 0.72 AU. Journal of Geophysical Research, 2009, 114, .	3.3	43

#	Article	IF	CITATIONS
109	Hydrogen in the extended Venus exosphere. Geophysical Research Letters, 2009, 36, .	1.5	21
110	Initial Venus Express magnetic field observations of the Venus bow shock location at solar minimum. Planetary and Space Science, 2008, 56, 785-789.	0.9	71
111	Initial Venus Express magnetic field observations of the magnetic barrier at solar minimum. Planetary and Space Science, 2008, 56, 790-795.	0.9	61
112	Upstream proton cyclotron waves at Venus. Planetary and Space Science, 2008, 56, 1293-1299.	0.9	9
113	Study of waves in the magnetotail region with cluster and DSP. Advances in Space Research, 2008, 41, 1593-1597.	1.2	8
114	Plasma sheet oscillations and their relation to substorm development: Cluster and double star TC1 case study. Advances in Space Research, 2008, 41, 1585-1592.	1.2	3
115	First upstream proton cyclotron wave observations at Venus. Geophysical Research Letters, 2008, 35, .	1.5	42
116	Study of reconnection $\hat{a} \in associated$ multiscale fluctuations with Cluster and Double Star. Journal of Geophysical Research, 2008, 113, .	3.3	8
117	Magnetotail dipolarization and associated current systems observed by Cluster and Double Star. Journal of Geophysical Research, 2008, 113 , .	3.3	14
118	Nearâ \in Earth substorm features from multiple satellite observations. Journal of Geophysical Research, 2008, 113, .	3.3	26
119	Local fieldâ€aligned currents in the magnetotail and ionosphere as observed by a Cluster, Double Star, and MIRACLE conjunction. Journal of Geophysical Research, 2008, 113, .	3.3	10
120	Response of the inner magnetosphere and the plasma sheet to a sudden impulse. Journal of Geophysical Research, 2008, 113 , .	3.3	31
121	First identification of mirror mode waves in Venus' magnetosheath?. Geophysical Research Letters, 2008, 35, .	1.5	50
122	Characteristic size and shape of the mirror mode structures in the solar wind at 0.72 AU. Geophysical Research Letters, 2008, 35, .	1.5	83
123	Magnetic fluctuations and turbulence in the Venus magnetosheath and wake. Geophysical Research Letters, 2008, 35, .	1.5	20
124	Behavior of current sheets at directional magnetic discontinuities in the solar wind at 0.72 AU. Geophysical Research Letters, 2008, 35, .	1.5	31
125	Proton cyclotron waves in the solar wind at Venus. Journal of Geophysical Research, 2008, $113,\ldots$	3.3	33
126	Mirrorâ€modeâ€like structures in Venus' induced magnetosphere. Journal of Geophysical Research, 2008, 113, .	3.3	44

#	Article	IF	CITATIONS
127	Intermittent turbulence, noisy fluctuations, and wavy structures in the Venusian magnetosheath and wake. Journal of Geophysical Research, 2008, 113 , .	3.3	34
128	Induced magnetosphere and its outer boundary at Venus. Journal of Geophysical Research, 2008, 113, .	3.3	44
129	Tailward propagation of Pi2 waves in the Earth's magnetotail lobe. Annales Geophysicae, 2008, 26, 4023-4030.	0.6	8
130	Structure of the near-Earth plasma sheet during tailward flows. Annales Geophysicae, 2008, 26, 709-724.	0.6	4
131	Flow burst-induced Kelvin-Helmholtz waves in the terrestrial magnetotail. Geophysical Research Letters, 2007, 34, .	1.5	33
132	Europa's Alfvén wing: shrinkage and displacement influenced by an induced magnetic field. Annales Geophysicae, 2007, 25, 905-914.	0.6	25
133	Spectral scaling in the turbulent Earth's plasma sheet revisited. Nonlinear Processes in Geophysics, 2007, 14, 535-541.	0.6	30
134	Little or no solar wind enters Venus' atmosphere at solar minimum. Nature, 2007, 450, 654-656.	13.7	79
135	Spatial structure of plasma flow associated turbulence in the Earth's plasma sheet. Annales Geophysicae, 2007, 25, 13-17.	0.6	16
136	Multi-satellite observations of ULF waves. Geophysical Monograph Series, 2006, , 109-135.	0.1	11
137	Local structure of the magnetotail current sheet: 2001 Cluster observations. Annales Geophysicae, 2006, 24, 247-262.	0.6	220
138	Do BBFs contribute to inner magnetosphere dipolarizations: Concurrent Cluster and Double Star observations. Geophysical Research Letters, 2006, 33, .	1.5	50
139	A statistical survey of the magnetotail current sheet. Advances in Space Research, 2006, 38, 1834-1837.	1.2	16
140	Bursty Bulk Flow Driven Turbulence in the Earth's Plasma Sheet. Space Science Reviews, 2006, 122, 301-311.	3.7	47
141	Alfvén waves in the near-PSBL lobe: Cluster observations. Annales Geophysicae, 2006, 24, 1001-1013.	0.6	13
142	Neutral sheet normal direction determination. Advances in Space Research, 2005, 36, 1940-1945.	1.2	13
143	Reconstruction of the magnetotail current sheet structure using multi-point Cluster measurements. Planetary and Space Science, 2005, 53, 237-243.	0.9	74
144	Multi-point observation of the high-speed flows in the plasma sheet. Advances in Space Research, 2005, 36, 1444-1447.	1.2	17

#	Article	IF	CITATIONS
145	Dissipation scales in the Earth's plasma sheet estimated from Cluster measurements. Nonlinear Processes in Geophysics, 2005, 12, 725-732.	0.6	22
146	Electric current and magnetic field geometry in flapping magnetotail current sheets. Annales Geophysicae, 2005, 23, 1391-1403.	0.6	171
147	Double Star/Cluster observation of neutral sheet oscillations on 5 August 2004. Annales Geophysicae, 2005, 23, 2909-2914.	0.6	58
148	Plasma flow channels with ULF waves observed by Cluster and Double Star. Annales Geophysicae, 2005, 23, 2929-2935.	0.6	27
149	Cluster and Double Star observations of dipolarization. Annales Geophysicae, 2005, 23, 2915-2920.	0.6	19
150	Compressional waves in the Earth's neutral sheet. Annales Geophysicae, 2004, 22, 303-315.	0.6	27
151	Multi-scale analysis of turbulence in the Earth's current sheet. Annales Geophysicae, 2004, 22, 2525-2533.	0.6	19
152	Properties of a bifurcated current sheet observed on 29 August 2001. Annales Geophysicae, 2004, 22, 2535-2540.	0.6	24
153	Wavelet analysis of magnetic turbulence in the Earth's plasma sheet. Physics of Plasmas, 2004, 11, 1333-1338.	0.7	34
154	Spatial scale of high-speed flows in the plasma sheet observed by Cluster. Geophysical Research Letters, 2004, 31, n/a-n/a.	1.5	291
155	Magnetic turbulence in the plasma sheet. Journal of Geophysical Research, 2004, 109, .	3.3	83
156	Flow burst–induced large-scale plasma sheet oscillation. Journal of Geophysical Research, 2004, 109, .	3.3	25
157	Cluster observation of a bifurcated current sheet. Geophysical Research Letters, 2003, 30, .	1.5	142
158	Kink mode oscillation of the current sheet. Geophysical Research Letters, 2003, 30, .	1.5	39
159	Current sheet flapping motion and structure observed by Cluster. Geophysical Research Letters, 2003, 30, .	1.5	196
160	Current sheet structure near magnetic X-line observed by Cluster. Geophysical Research Letters, 2003, 30, .	1.5	240
161	A statistical study of compressional waves in the tail current sheet. Journal of Geophysical Research, 2003, 108, .	3.3	37
162	Multi-scale magnetic field intermittence in the plasma sheet. Annales Geophysicae, 2003, 21, 1955-1964.	0.6	62

#	Article	IF	CITATIONS
163	Fast flow during current sheet thinning. Geophysical Research Letters, 2002, 29, 55-1-55-4.	1.5	114
164	The Permanent and Inductive Magnetic Moments of Ganymede. Icarus, 2002, 157, 507-522.	1.1	327
165	Wave activity in Europa's wake: Implications for ion pickup. Journal of Geophysical Research, 2001, 106, 26033-26048.	3.3	52
166	Galileo Magnetometer Measurements: A Stronger Case for a Subsurface Ocean at Europa. Science, 2000, 289, 1340-1343.	6.0	576
167	Probing Ganymede's magnetosphere with field line resonances. Journal of Geophysical Research, 1999, 104, 14729-14738.	3.3	20
168	Systems III and IV modulation of the Io phase effect in the Io plasma torus. Journal of Geophysical Research, 1997, 102, 24403-24410.	3.3	7
169	Evidence for short cooling time in the Io plasma torus. Geophysical Research Letters, 1997, 24, 1147-1150.	1.5	16
170	Radio emission from polar caps in pulsars. International Astronomical Union Colloquium, 1996, 160, 181-182.	0.1	0
171	Strong Double Layers, Existence Criteria, and Annihilation: An Application to Solar Flares. International Astronomical Union Colloquium, 1994, 142, 589-593.	0.1	0
172	Particle acceleration in flares. Solar Physics, 1994, 153, 33-53.	1.0	14
173	Title is missing!. Journal Physics D: Applied Physics, 1993, 26, 1192-1202.	1.3	10
174	Solar Orbiter's first Venus flyby: MAG observations of structures and waves associated with the induced Venusian magnetosphere. Astronomy and Astrophysics, 0, , .	2.1	10