Michael A Hill

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4528593/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Diabetic Cardiomyopathy. Circulation Research, 2018, 122, 624-638.	2.0	1,076
2	Signaling Mechanisms Underlying the Vascular Myogenic Response. Physiological Reviews, 1999, 79, 387-423.	13.1	887
3	Direct regulation of blood pressure by smooth muscle cell mineralocorticoid receptors. Nature Medicine, 2012, 18, 1429-1433.	15.2	286
4	Invited Review: Arteriolar smooth muscle mechanotransduction: Ca ²⁺ signaling pathways underlying myogenic reactivity. Journal of Applied Physiology, 2001, 91, 973-983.	1.2	246
5	Obesity, Adipose Tissue and Vascular Dysfunction. Circulation Research, 2021, 128, 951-968.	2.0	243
6	Insulin resistance, cardiovascular stiffening and cardiovascular disease. Metabolism: Clinical and Experimental, 2021, 119, 154766.	1.5	231
7	Autoimmune Basis for Postural Tachycardia Syndrome. Journal of the American Heart Association, 2014, 3, e000755.	1.6	199
8	The Plastic Nature of the Vascular Wall: A Continuum of Remodeling Events Contributing to Control of Arteriolar Diameter and Structure. Physiology, 2009, 24, 45-57.	1.6	186
9	Covid-19 and Disparities in Nutrition and Obesity. New England Journal of Medicine, 2020, 383, e69.	13.9	180
10	Impaired Peripheral Vasomotion in Diabetes. Diabetes Care, 1996, 19, 715-721.	4.3	174
11	Integrins as Unique Receptors for Vascular Control. Journal of Vascular Research, 2003, 40, 211-233.	0.6	158
12	Integrins and mechanotransduction of the vascular myogenic response. American Journal of Physiology - Heart and Circulatory Physiology, 2001, 280, H1427-H1433.	1.5	151
13	Commentary: COVID-19 in patients with diabetes. Metabolism: Clinical and Experimental, 2020, 107, 154217.	1.5	136
14	Acute mechanoadaptation of vascular smooth muscle cells in response to continuous arteriolar vasoconstriction: implications for functional remodeling. FASEB Journal, 2004, 18, 708-710.	0.2	126
15	Role of Reactive Oxygen Species in Tumor Necrosis Factor-alpha Induced Endothelial Dysfunction. Current Hypertension Reviews, 2008, 4, 245-255.	0.5	123
16	Large conductance, Ca ²⁺ â€activated K ⁺ channels (BK _{Ca}) and arteriolar myogenic signaling. FEBS Letters, 2010, 584, 2033-2042.	1.3	120
17	Role of Renin-Angiotensin-Aldosterone System Activation in Promoting Cardiovascular Fibrosis and Stiffness. Hypertension, 2018, 72, 537-548.	1.3	112
18	Lymphatic vascular integrity is disrupted in type 2 diabetes due to impaired nitric oxide signalling. Cardiovascular Research, 2015, 107, 89-97.	1.8	111

#	Article	IF	CITATIONS
19	Augmented Vascular Smooth Muscle Cell Stiffness and Adhesion When Hypertension Is Superimposed on Aging. Hypertension, 2015, 65, 370-377.	1.3	109
20	Extracellular matrix-specific focal adhesions in vascular smooth muscle produce mechanically active adhesion sites. American Journal of Physiology - Cell Physiology, 2008, 295, C268-C278.	2.1	107
21	Arteriolar myogenic signalling mechanisms: Implications for local vascular function. Clinical Hemorheology and Microcirculation, 2006, 34, 67-79.	0.9	104
22	Interaction of IL-6 and TNF-α contributes to endothelial dysfunction in type 2 diabetic mouse hearts. PLoS ONE, 2017, 12, e0187189.	1.1	95
23	Impairment of Peripheral Blood Flow Responses in Diabetes Resembles an Enhanced Aging Effect. Diabetes Care, 1997, 20, 1711-1716.	4.3	92
24	Lipoproteins and Diabetic Microvascular Complications. Current Pharmaceutical Design, 2004, 10, 3395-3418.	0.9	87
25	Myogenic contraction in rat skeletal muscle arterioles: smooth muscle membrane potential and Ca2+ signaling. American Journal of Physiology - Heart and Circulatory Physiology, 2005, 289, H1326-H1334.	1.5	87
26	Endothelial Mineralocorticoid Receptors Differentially Contribute to Coronary and Mesenteric Vascular Function Without Modulating Blood Pressure. Hypertension, 2015, 66, 988-997.	1.3	84
27	Openers of SK _{Ca} and IK _{Ca} channels enhance agonistâ€evoked endothelial nitric oxide synthesis and arteriolar vasodilation. FASEB Journal, 2009, 23, 1138-1145.	0.2	76
28	Vascular mineralocorticoid receptor regulates microRNA-155 to promote vasoconstriction and rising blood pressure with aging. JCI Insight, 2016, 1, e88942.	2.3	76
29	Temporal analysis of vascular smooth muscle cell elasticity and adhesion reveals oscillation waveforms that differ with aging. Aging Cell, 2012, 11, 741-750.	3.0	74
30	Therapeutic potential of pharmacologically targeting arteriolar myogenic tone. Trends in Pharmacological Sciences, 2009, 30, 363-374.	4.0	73
31	Spatial Distribution and Mechanical Function of Elastin in Resistance Arteries. Arteriosclerosis, Thrombosis, and Vascular Biology, 2011, 31, 2889-2896.	1.1	68
32	Normal Blood Flow Response and Vasomotion in the Diabetic Charcot Foot. Journal of Diabetes and Its Complications, 1998, 12, 147-153.	1.2	66
33	Ca ²⁺ sensitization due to myosin light chain phosphatase inhibition and cytoskeletal reorganization in the myogenic response of skeletal muscle resistance arteries. Journal of Physiology, 2013, 591, 1235-1250.	1.3	65
34	Arteriolar vascular smooth muscle cells: Mechanotransducers in a complex environment. International Journal of Biochemistry and Cell Biology, 2012, 44, 1505-1510.	1.2	63
35	Regulation of Ion Channels by Integrins. Cell Biochemistry and Biophysics, 2002, 36, 41-66.	0.9	62
36	Heterogeneity in function of small artery smooth muscle BK _{Ca} : involvement of the β1â€subunit. Journal of Physiology, 2009, 587, 3025-3044.	1.3	62

#	Article	IF	CITATIONS
37	Epithelial Sodium Channel in Aldosterone-Induced Endothelium Stiffness and Aortic Dysfunction. Hypertension, 2018, 72, 731-738.	1.3	61
38	Antecedent hydrogen sulfide elicits an anti-inflammatory phenotype in postischemic murine small intestine: role of BK channels. American Journal of Physiology - Heart and Circulatory Physiology, 2010, 299, H1554-H1567.	1.5	57
39	Temporal Aspects of Ca ²⁺ and Myosin Phosphorylation during Myogenic and Norepinephrine-Induced Arteriolar Constriction. Journal of Vascular Research, 2000, 37, 556-567.	0.6	56
40	A Role for Heterocellular Coupling and EETs in Dilation of Rat Cremaster Arteries. Microcirculation, 2006, 13, 119-130.	1.0	55
41	INTERLEUKIN-1 AND INTERLEUKIN-6 MEDIATED SKELETAL MUSCLE ARTERIOLAR VASODILATION. Shock, 1998, 9, 210-215.	1.0	54
42	Adiponectin abates diabetes-induced endothelial dysfunction by suppressing oxidative stress, adhesion molecules, and inflammation in type 2 diabetic mice. American Journal of Physiology - Heart and Circulatory Physiology, 2012, 303, H106-H115.	1.5	54
43	Capacitative Ca2+ entry in vascular endothelial cells is mediated via pathways sensitive to 2 aminoethoxydiphenyl borate and xestospongin C. British Journal of Pharmacology, 2002, 135, 119-128.	2.7	53
44	Altered cremaster muscle hemodynamics due to disruption of the deferential feed vessels. Microvascular Research, 1990, 39, 349-363.	1.1	52
45	Hydrogen sulfide preconditioning or neutrophil depletion attenuates ischemia-reperfusion-induced mitochondrial dysfunction in rat small intestine. American Journal of Physiology - Renal Physiology, 2012, 302, G44-G54.	1.6	50
46	Vasoactive agonists exert dynamic and coordinated effects on vascular smooth muscle cell elasticity, cytoskeletal remodelling and adhesion. Journal of Physiology, 2014, 592, 1249-1266.	1.3	50
47	Mechanical activation of angiotensin II type 1 receptors causes actin remodelling and myogenic responsiveness in skeletal muscle arterioles. Journal of Physiology, 2016, 594, 7027-7047.	1.3	49
48	Transient increases in diameter and [Ca2+]i are not obligatory for myogenic constriction. American Journal of Physiology - Heart and Circulatory Physiology, 2000, 278, H345-H352.	1.5	48
49	Agonistic Autoantibodies as Vasodilators in Orthostatic Hypotension. Hypertension, 2012, 59, 402-408.	1.3	48
50	TRPV4 increases cardiomyocyte calcium cycling and contractility yet contributes to damage in the aged heart following hypoosmotic stress. Cardiovascular Research, 2019, 115, 46-56.	1.8	48
51	Pharmacological evidence for capacitative Ca2+ entry in cannulated and pressurized skeletal muscle arterioles. British Journal of Pharmacology, 2001, 134, 247-256.	2.7	47
52	Potassium Channels and Membrane Potential in the Modulation of Intracellular Calcium in Vascular Endothelial Cells. Journal of Cardiovascular Electrophysiology, 2004, 15, 598-610.	0.8	46
53	Autoantibody activation of beta-adrenergic and muscarinic receptors contributes to an "autoimmune― orthostatic hypotension. Journal of the American Society of Hypertension, 2012, 6, 40-47.	2.3	46
54	Reduced EDHF responses and connexin activity in mesenteric arteries from the insulin-resistant obese Zucker rat. Diabetologia, 2008, 51, 872-881.	2.9	45

#	Article	IF	CITATIONS
55	Alteration of microtubule polymerization modulates arteriolar vasomotor tone. American Journal of Physiology - Heart and Circulatory Physiology, 1999, 277, H100-H106.	1.5	44
56	Effects of mibefradil and nifedipine on arteriolar myogenic responsiveness and intracellular Ca2+. British Journal of Pharmacology, 2000, 131, 1065-1072.	2.7	41
57	Cellular Signalling In Arteriolar Myogenic Constriction: Involvement Of Tyrosine Phosphorylation Pathways. Clinical and Experimental Pharmacology and Physiology, 2002, 29, 612-619.	0.9	41
58	Epithelial sodium channels in endothelial cells mediate diet-induced endothelium stiffness and impaired vascular relaxation in obese female mice. Metabolism: Clinical and Experimental, 2019, 99, 57-66.	1.5	40
59	Troglitazone, but not rosiglitazone, inhibits Na/H exchange activity and proliferation of macrovascular endothelial cells. Journal of Diabetes and Its Complications, 2001, 15, 120-127.	1.2	39
60	Local Regulation of Microvascular Perfusion. , 2008, , 161-284.		39
61	Mechanisms underlying regional differences in the Ca ²⁺ sensitivity of BK _{Ca} current in arteriolar smooth muscle. Journal of Physiology, 2013, 591, 1277-1293.	1.3	38
62	Secretion of Apolipoprotein E From Macrophages Occurs via a Protein Kinase A– and Calcium-Dependent Pathway Along the Microtubule Network. Circulation Research, 2007, 101, 607-616.	2.0	36
63	Vascular transcriptional alterations produced by juvenile obesity in Ossabaw swine. Physiological Genomics, 2013, 45, 434-446.	1.0	36
64	Enhanced endothelium epithelial sodium channel signaling prompts left ventricular diastolic dysfunction in obese female mice. Metabolism: Clinical and Experimental, 2018, 78, 69-79.	1.5	35
65	Decreased activity of the smooth muscle Na ⁺ /Ca ²⁺ exchanger impairs arteriolar myogenic reactivity. Journal of Physiology, 2008, 586, 1669-1681.	1.3	33
66	Aldosterone and Vascular Mineralocorticoid Receptors. Hypertension, 2014, 63, 632-637.	1.3	33
67	Nâ€cadherin, A Vascular Smooth Muscle Cell–Cell Adhesion Molecule: Function and Signaling for Vasomotor Control. Microcirculation, 2014, 21, 208-218.	1.0	33
68	Arterial Stiffening in Western Diet-Fed Mice Is Associated with Increased Vascular Elastin, Transforming Growth Factor-β, and Plasma Neuraminidase. Frontiers in Physiology, 2016, 7, 285.	1.3	33
69	Passive Pressure–Diameter Relationship and Structural Composition of Rat Mesenteric Lymphangions. Lymphatic Research and Biology, 2012, 10, 152-163.	0.5	32
70	Disconnect between adipose tissue inflammation and cardiometabolic dysfunction in Ossabaw pigs. Obesity, 2015, 23, 2421-2429.	1.5	30
71	Matrix protein glycation impairs agonist-induced intracellular Ca2+ signaling in endothelial cells. Journal of Cellular Physiology, 2002, 193, 80-92.	2.0	29
72	Role of the vascular endothelial sodium channel activation in the genesis of pathologically increased cardiovascular stiffness. Cardiovascular Research, 2022, 118, 130-140.	1.8	29

#	Article	IF	CITATIONS
73	New technologies for dissecting the arteriolar myogenic response. Trends in Pharmacological Sciences, 2007, 28, 308-315.	4.0	28
74	G protein coupled receptor transactivation: Extending the paradigm to include serine/threonine kinase receptors. International Journal of Biochemistry and Cell Biology, 2012, 44, 722-727.	1.2	28
75	Commentary: COVID-19 and obesity pandemics converge into a syndemic requiring urgent and multidisciplinary action. Metabolism: Clinical and Experimental, 2021, 114, 154408.	1.5	28
76	Arteriolar arcades and pressure distribution in cremaster muscle microcirculation. Microvascular Research, 1992, 44, 117-124.	1.1	27
77	Adiponectin Receptor Agonist, AdipoRon, Causes Vasorelaxation Predominantly Via a Direct Smooth Muscle Action. Microcirculation, 2016, 23, 207-220.	1.0	27
78	ENDOTOXIN INTERACTS WITH TUMOR NECROSIS FACTOR- $\hat{1}$ ± TO INDUCE VASODILATION OF ISOLATED RAT SKELETAL MUSCLE ARTERIOLES. Shock, 1996, 5, 251-257.	1.0	26
79	Challenges of Acute Endovascular Stroke Trials. Stroke, 2014, 45, 3116-3122.	1.0	26
80	Heterogeneity in Kv7 Channel Function in the Cerebral and Coronary Circulation. Microcirculation, 2015, 22, 109-121.	1.0	26
81	Angiotensin II Type 1 Receptor Mechanoactivation Involves RGS5 (Regulator of G Protein Signaling 5) in Skeletal Muscle Arteries. Hypertension, 2017, 70, 1264-1272.	1.3	26
82	Tyrosine phosphorylation following alterations in arteriolar intraluminal pressure and wall tension. American Journal of Physiology - Heart and Circulatory Physiology, 2001, 281, H1047-H1056.	1.5	25
83	Intraluminal pressure stimulates MAPK phosphorylation in arterioles: temporal dissociation from myogenic contractile response. American Journal of Physiology - Heart and Circulatory Physiology, 2003, 285, H1764-H1773.	1.5	25
84	Discovery of novel L-type voltage-gated calcium channel blockers and application for the prevention of inflammation and angiogenesis. Journal of Neuroinflammation, 2020, 17, 132.	3.1	25
85	Endothelium-independent constriction of isolated, pressurized arterioles by N ω -nitro-L -arginine methyl ester (L -NAME). British Journal of Pharmacology, 2007, 151, 602-609.	2.7	24
86	Delayed arteriolar relaxation after prolonged agonist exposure: functional remodeling involving tyrosine phosphorylation. American Journal of Physiology - Heart and Circulatory Physiology, 2003, 285, H849-H856.	1.5	22
87	Endotheliumâ€dependent Vasodilation in Myogenically Active Mouse Skeletal Muscle Arterioles: Role of EDH and K ⁺ Channels. Microcirculation, 2009, 16, 377-390.	1.0	22
88	Sexual Dimorphism in Obesity-Associated Endothelial ENaC Activity and Stiffening in Mice. Endocrinology, 2019, 160, 2918-2928.	1.4	22
89	Membrane Cholesterol Depletion with β-Cyclodextrin Impairs Pressure-Induced Contraction and Calcium Signalling in Isolated Skeletal Muscle Arterioles. Journal of Vascular Research, 2007, 44, 292-302.	0.6	21
90	Does C-Reactive Protein Contribute to Atherothrombosis Via Oxidant-Mediated Release of Pro-Thrombotic Factors and Activation of Platelets?. Frontiers in Physiology, 2012, 3, 433.	1.3	21

#	Article	IF	CITATIONS
91	Tyrosine phosphorylation modulates arteriolar tone but is not fundamental to myogenic response. American Journal of Physiology - Heart and Circulatory Physiology, 2000, 278, H373-H382.	1.5	20
92	The vascular endothelium in diabetes: a practical target fordrug treatment?. Expert Opinion on Therapeutic Targets, 2005, 9, 101-117.	1.5	20
93	N-Cadherin and Integrin Blockade Inhibit Arteriolar Myogenic Reactivity but not Pressure-Induced Increases in Intracellular Ca2+. Frontiers in Physiology, 2010, 1, 165.	1.3	20
94	Editorial: Obesity, metabolic phenotypes and COVID-19. Metabolism: Clinical and Experimental, 2022, 128, 155121.	1.5	20
95	Inhibition of Myogenic Tone in Rat Cremaster and Cerebral Arteries by SKA-31, an Activator of Endothelial KCa2.3 and KCa3.1 Channels. Journal of Cardiovascular Pharmacology, 2015, 66, 118-127.	0.8	19
96	Depletion of dendritic cells in perivascular adipose tissue improves arterial relaxation responses in type 2 diabetic mice. Metabolism: Clinical and Experimental, 2018, 85, 76-89.	1.5	19
97	Advanced Glycation End Products Acutely Impair Ca2+ Signaling in Bovine Aortic Endothelial Cells. Frontiers in Physiology, 2013, 4, 38.	1.3	18
98	Nonenzymatic glycation interferes with fibronectinâ€integrin interactions in vascular smooth muscle cells. Microcirculation, 2017, 24, e12347.	1.0	18
99	Erythrocyte membrane fluidity in type 1 diabetes mellitus. Pathology, 1983, 15, 449-451.	0.3	17
100	A Calcium Mediated Mechanism Coordinating Vascular Smooth Muscle Cell Adhesion During KCl Activation. Frontiers in Physiology, 2018, 9, 1810.	1.3	17
101	Coupling a change in intraluminal pressure to vascular smooth muscle depolarization: still stretching for an explanation. American Journal of Physiology - Heart and Circulatory Physiology, 2007, 292, H2570-H2572.	1.5	16
102	Large Conductance Ca2+-Activated K+ Channel (BKCa) α-Subunit Splice Variants in Resistance Arteries from Rat Cerebral and Skeletal Muscle Vasculature. PLoS ONE, 2014, 9, e98863.	1.1	16
103	Small artery mechanobiology: Roles of cellular and nonâ€cellular elements. Microcirculation, 2016, 23, 611-613.	1.0	15
104	Chronic interval exercise training prevents BK _{Ca} channel-mediated coronary vascular dysfunction in aortic-banded miniswine. Journal of Applied Physiology, 2018, 125, 86-96.	1.2	15
105	Regulation of blood flow in small arteries: mechanosensory events underlying myogenic vasoconstriction. Journal of Exercise Rehabilitation, 2020, 16, 207-215.	0.4	15
106	Impaired Arteriolar Mechanotransduction in Experimental Diabetes Mellitus. Journal of Diabetes and Its Complications, 1999, 13, 235-242.	1.2	14
107	Small Artery Elastin Distribution and Architecture—Focus on Three Dimensional Organization. Microcirculation, 2016, 23, 614-620.	1.0	14
108	Endothelial sodium channel activation promotes cardiac stiffness and diastolic dysfunction in Western diet fed female mice. Metabolism: Clinical and Experimental, 2020, 109, 154223.	1.5	13

#	Article	IF	CITATIONS
109	Western diet induces renal artery endothelial stiffening that is dependent on the epithelial Na ⁺ channel. American Journal of Physiology - Renal Physiology, 2020, 318, F1220-F1228.	1.3	13
110	Alpha1-adrenergic stimulation selectively enhances endothelium-mediated vasodilation in rat cremaster arteries. Physiological Reports, 2018, 6, e13703.	0.7	12
111	Mechanisms underlying pervanadate-induced contraction of rat cremaster muscle arterioles. European Journal of Pharmacology, 2002, 442, 107-114.	1.7	11
112	Brief serotonin exposure initiates arteriolar inward remodeling processes in vivo that involve transglutaminase activation and actin cytoskeleton reorganization. American Journal of Physiology - Heart and Circulatory Physiology, 2016, 310, H188-H198.	1.5	11
113	LACK OF DIRECT ENDOTOXIN-INDUCED VASOACTIVE EFFECTS ON ISOLATED SKELETAL MUSCLE ARTERIOLES. Shock, 1995, 3, 216-223.	1.0	10
114	Myogenic reactivity of rat epineurial arterioles: potential role in local vasoregulatory events. American Journal of Physiology - Heart and Circulatory Physiology, 1999, 277, H144-H151.	1.5	10
115	Nâ€Cadherin, a novel and rapidly remodelling site involved in vasoregulation of small cerebral arteries. Journal of Physiology, 2017, 595, 1987-2000.	1.3	10
116	Smooth muscle mineralocorticoid receptor as an epigenetic regulator of vascular ageing. Cardiovascular Research, 2023, 118, 3386-3400.	1.8	10
117	Regulation of Coronary Endothelial Function by Interactions between TNF-α, LOX-1 and Adiponectin in Apolipoprotein E Knockout Mice. Journal of Vascular Research, 2015, 52, 372-382.	0.6	9
118	Endothelial sodium channel activation mediates DOCA-salt-induced endothelial cell and arterial stiffening. Metabolism: Clinical and Experimental, 2022, 130, 155165.	1.5	7
119	Cytochrome P450 Products and Arachidonic Acid–Induced, Non–Store-Operated, Ca2+Entry in Cultured Bovine Endothelial Cells. Endothelium: Journal of Endothelial Cell Research, 2005, 12, 153-161.	1.7	6
120	Development of an Image-Based System for Measurement of Membrane Potential, Intracellular Ca2+ and Contraction in Arteriolar Smooth Muscle Cells. Microcirculation, 2010, 17, 629-640.	1.0	6
121	Measurement of Pulse Propagation Velocity, Distensibility and Strain in an Abdominal Aortic Aneurysm Mouse Model. Journal of Visualized Experiments, 2020, , .	0.2	6
122	Inhibition of sphingomyelinase attenuates diet – Induced increases in aortic stiffness. Journal of Molecular and Cellular Cardiology, 2022, 167, 32-39.	0.9	6
123	Maternal Exposure to High Fructose and Offspring Health. Hypertension, 2019, 74, 499-501.	1.3	5
124	Mineralocorticoid antagonists and ENaC inhibitors in hyperaldosteronism. Journal of Clinical Hypertension, 2019, 21, 929-931.	1.0	5
125	Mechanisms underlying smooth muscle Ca 2+ waves in cremaster muscle arterioles. FASEB Journal, 2009, 23, 767.8.	0.2	5
126	Arteriolar vasodilation involves actin depolymerization. American Journal of Physiology - Heart and Circulatory Physiology, 2018, 315, H423-H428.	1.5	4

#	Article	IF	CITATIONS
127	Alternate Day Fasting Improves Endothelial Function in Type 2 Diabetic Mice: Role of Adipose-Derived Hormones. Frontiers in Cardiovascular Medicine, 2022, 9, .	1.1	4
128	VITREOUS FLUOROPHOTOMETRY IN CHILDREN WITH TYPE I DIABETES MELLITUS. Australian and New Zealand Journal of Ophthalmology, 1984, 12, 39-43.	0.4	3
129	Approaches for introducing peptides into intact and functional arteriolar smooth muscle: manipulation of protein kinase-based signalling. Clinical and Experimental Pharmacology and Physiology, 2003, 30, 653-658.	0.9	3
130	Measurement of Changes in Endothelial and Smooth Muscle Ca2+ in Pressurized Arteries. Methods in Molecular Biology, 2013, 937, 229-238.	0.4	3
131	A very unusual complication of amniocentesis. Clinical Case Reports (discontinued), 2015, 3, 345-348.	0.2	3
132	Oxidant signaling underlies PKGIα modulation of Ca ²⁺ sparks and BK _{Ca} in myogenically active arterioles. Science Signaling, 2016, 9, fs15.	1.6	3
133	The Effect of Thyroid Hormone Supplementation on Hemodynamic Stability and Survival in an Endotoxin-Induced Model of Physiologic Stress. Journal of Surgical Research, 1996, 61, 77-83.	0.8	2
134	Myogenic Tone and Mechanotransduction. , 2012, , 1243-1257.		2
135	Modification of Fibronectin by Non-Enzymatic Glycation Impairs K+ Channel Function in Rat Cerebral Artery Smooth Muscle Cells. Frontiers in Physiology, 0, 13, .	1.3	2
136	The Plastic Nature of the Vascular Wall: Reply to Lee, Sandow, and DeMay. Physiology, 2009, 24, 273-275.	1.6	1
137	Increased Adhesion of Glycated Proteins to Arteriolar Vascular Smooth Muscle Cells as Determined by Atomic Force Microscopy. Biophysical Journal, 2012, 102, 587a.	0.2	1
138	Local Control of Microvascular Perfusion. Colloquium Series on Integrated Systems Physiology From Molecule To Function, 2012, 4, 1-148.	0.3	1
139	Inherent rhythm of smooth muscle cells in rat mesenteric arterioles: An eigensystem formulation. Physical Review E, 2016, 93, 042415.	0.8	1
140	Insulin- and Aldosterone-Mediated Signaling in Endothelial Cells Converge on SGK1 to Promote Endothelial Sodium Channel Activation. Metabolism: Clinical and Experimental, 2021, 116, 154660.	1.5	1
141	Diabetes and Oxidant Stress. , 2008, , 123-158.		1
142	CADHERINS PLAY A ROLE IN ARTERIOLAR MYOGENIC RESPONSIVENESS. FASEB Journal, 2008, 22, 1143.7.	0.2	1
143	Autoregulation and Resistance-Artery Function. , 1991, , 345-371.		1
144	Factors influencing residual pancreatic β cell function in recently diagnosed Type 1 diabetic children. Journal of Paediatrics and Child Health, 1982, 18, 37-39.	0.4	0

#	Article	IF	CITATIONS
145	The Plastic Nature of the Vascular Wall: Reply to Folkow. Physiology, 2010, 25, 266-267.	1.6	0
146	Should we be sympathetic to angiotensin II infusion?. Journal of Physiology, 2013, 591, 5269-5270.	1.3	0
147	Mechanotransduction and the Myogenic Response in Diabetes. Studies in Mechanobiology, Tissue Engineering and Biomaterials, 2014, , 233-270.	0.7	Ο
148	Quantification of elastin-fiber reticulation in rat mesenteric arterioles using molecular dynamics optimization. Biomedical Physics and Engineering Express, 2018, 4, 035029.	0.6	0
149	Frontiers in Vascular Physiology Grand Challenges in Vascular Physiology. Frontiers in Physiology, 2020, 11, 852.	1.3	Ο
150	Mechanisms underlying vascular stiffening in obesity, insulin resistance, and type 2 diabetes. , 2021, , 63-88.		0
151	Exploiting the cellular actions of SKCa and IKCa channels to manipulate endothelial function and vascular tone. FASEB Journal, 2009, 23, 627.6.	0.2	Ο
152	Exercise Training Improves Coronary Microvascular Arteriolar Function in Familial Hypercholesterolemia Porcine Model via Nrf2. FASEB Journal, 2012, 26, 1138.24.	0.2	0
153	Ageâ€Related Changes in the Expression of Elastin in Small cerebral and Mesenteric Arteries. FASEB Journal, 2012, 26, 861.4.	0.2	Ο
154	Inflammation, but not oxidative stress or apoptosis, predominates in atherosclerosisâ€associated endothelial dysfunction in juvenile Ossabaw pigs with metabolic syndrome. FASEB Journal, 2012, 26, 1055.1.	0.2	0
155	Nâ€cadherins Serve as a Mechanotransducer in Midâ€Cerebral Artery Smooth Muscle. FASEB Journal, 2013, 27, .	0.2	Ο
156	Development of the elastin network in the walls of resistance arteries from neonatal and adult rats. FASEB Journal, 2013, 27, 679.8.	0.2	0
157	Topical application of Serotonin + Lâ€NAME in vivo induces inward remodeling of the rat cremasteric 1A arteriole via a mechanism that is antagonized by the addition of cystamine, a competitive inhibitor of transglutaminase II. FASEB Journal, 2013, 27, lb657.	0.2	Ο
158	Angiotensin IIâ€independent Activation of AT1 Receptors in Skeletal Muscle Arterioles. FASEB Journal, 2013, 27, 678.13.	0.2	0
159	Exogenous diacylglycerol restores arteriolar myogenic constriction following candesartan (664.10). FASEB Journal, 2014, 28, 664.10.	0.2	Ο
160	Recruitment of RGS5 Protein to Mechanically Activated AT 1 R in Arteriolar VSMC. FASEB Journal, 2015, 29, 636.5.	0.2	0
161	Regional Variation in Arterial Myogenic Responsiveness: Links to Potassium Channel Diversity/Function. , 2016, , 131-152.		0
162	Alterations to Protein Level and Cellular Location of the BK Ca αâ€Subunit in the Coronary Vasculature are Dependent on Sex Hormones, Metabolic Status, and Species: A Retrospective Study in Multiple Swine Models of Pressure Overloadâ€Induced Heart Failure. FASEB Journal, 2018, 32, 579.2.	0.2	0

#	Article	IF	CITATIONS
163	Estrogen receptor alpha mediated activation of the endothelial epithelial sodium channel: role in the genesis of arterial stiffness. FASEB Journal, 2018, 32, 846.7.	0.2	0
164	Ageâ€Related Changes in Skeletal Muscle and Small Mesenteric Arterial Function in Spontaneously Hypertensive Rats. FASEB Journal, 2019, 33, lb456.	0.2	0