Clara Casado-Coterillo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4528384/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Practical Approach to Zeolitic Membranes and Coatings: State of the Art, Opportunities, Barriers, and Future Perspectives. Chemistry of Materials, 2012, 24, 2829-2844.	3.2	332
2	HKUST-1 MOF: A matrix to synthesize CuO and CuO–CeO2 nanoparticle catalysts for CO oxidation. Chemical Engineering Journal, 2012, 195-196, 180-187.	6.6	108
3	Synthesis and characterisation of MOF/ionic liquid/chitosan mixed matrix membranes for CO ₂ /N ₂ separation. RSC Advances, 2015, 5, 102350-102361.	1.7	102
4	Pervaporative dehydration of industrial solvents using a zeolite NaA commercial membrane. Separation and Purification Technology, 2003, 32, 207-213.	3.9	93
5	Synthesis and Characterisation of ETS-10/Acetate-based Ionic Liquid/Chitosan Mixed Matrix Membranes for CO2/N2 Permeation. Membranes, 2014, 4, 287-301.	1.4	51
6	Conversion of glucose to lactic acid derivatives with mesoporous Snâ€ <scp>MCM</scp> â€41 and microporous titanosilicates. Journal of Chemical Technology and Biotechnology, 2014, 89, 1344-1350.	1.6	51
7	Chitosan:poly (vinyl) alcohol composite alkaline membrane incorporating organic ionomers and layered silicate materials into a PEM electrochemical reactor. Journal of Membrane Science, 2016, 498, 395-407.	4.1	44
8	Pervaporative dehydration of organic mixtures using a commercial silica membrane. Separation and Purification Technology, 2005, 42, 39-45.	3.9	43
9	Exfoliated Titanosilicate Material UZAR‣1 Obtained from JDF‣1. European Journal of Inorganic Chemistry, 2010, 2010, 159-163.	1.0	42
10	Chiral Imprinting with Amino Acids of Ordered Mesoporous Silica Exhibiting Enantioselectivity after Calcination. Chemistry of Materials, 2011, 23, 1280-1287.	3.2	42
11	Mixed matrix membranes for gas separation with special nanoporous fillers. Desalination and Water Treatment, 2011, 27, 42-47.	1.0	40
12	LTA/Poly(1â€ŧrimethylsilylâ€1â€propyne) Mixedâ€Matrix Membranes for Highâ€Temperature CO ₂ /N ₂ Separation. Chemical Engineering and Technology, 2015, 38, 658-666.	0.9	39
13	Preparation and characterization of ITQ-29/polysulfone mixed-matrix membranes for gas separation: Effect of zeolite composition and crystal size. Chemical Engineering Science, 2012, 73, 116-122.	1.9	38
14	Permselectivity improvement in membranes for CO2/N2 separation. Separation and Purification Technology, 2016, 157, 102-111.	3.9	37
15	Comparison of Flat and Hollowâ€Fiber Mixedâ€Matrix Composite Membranes for CO ₂ Separation with Temperature. Chemical Engineering and Technology, 2017, 40, 997-1007.	0.9	34
16	Layered titanosilicates JDF-L1 and AM-4 for biocide applications. Applied Clay Science, 2012, 56, 30-35.	2.6	31
17	Atomic Resolution Analysis of Microporous Titanosilicate ETSâ€10 through Aberration Corrected STEM Imaging. ChemCatChem, 2013, 5, 2595-2598.	1.8	31
18	Adsorption of Amino Acids (Ala, Cys, His, Met) on Zeolites: Fourier Transform Infrared and Raman Spectroscopy Investigations. Astrobiology, 2011, 11, 409-418.	1.5	30

#	Article	IF	CITATIONS
19	Melt Compounding of Swollen Titanosilicate JDF-L1 with Polysulfone To Obtain Mixed Matrix Membranes for H2/CH4 Separation. Industrial & Engineering Chemistry Research, 2013, 52, 1901-1907.	1.8	28
20	Advances in Hydrogen Separation and Purification with Membrane Technology. , 2013, , 245-268.		28
21	Mixed Matrix Membranes for O2/N2 Separation: The Influence of Temperature. Membranes, 2016, 6, 28.	1.4	27
22	Comparison of SiO2-ZrO2-50% and commercial SiO2 membranes on the pervaporative dehydration of organic solvents. Desalination, 2006, 193, 97-102.	4.0	26
23	Pervaporation Technology for the Dehydration of Solvents and Raw Materials in the Process Industry. Drying Technology, 2007, 25, 1819-1828.	1.7	26
24	Synthesis and Characterization of Microporous ZrO ₂ Membranes for Gas Permeation at 200°C. Separation Science and Technology, 2011, 46, 1224-1230.	1.3	26
25	Dehydration of Industrial Ketonic Effluents by Pervaporation. Comparative Behavior of Ceramic and Polymeric Membranes. Separation Science and Technology, 2003, 38, 3473-3491.	1.3	25
26	Synthesis and characterization of microporous titanosilicate ETS-10 obtained with different Ti sources. Materials Research Bulletin, 2009, 44, 1225-1231.	2.7	25
27	Seeded synthesis of layered titanosilicate JDF-L1. Materials Letters, 2009, 63, 113-115.	1.3	24
28	<scp>l</scp> - and <scp>d</scp> -Proline Adsorption by Chiral Ordered Mesoporous Silica. Langmuir, 2012, 28, 6638-6644.	1.6	24
29	Synthesis and Characterization of ETS-10/Chitosan Nanocomposite Membranes for Pervaporation. Separation Science and Technology, 2014, 49, 1903-1909.	1.3	23
30	Adsorption of Adenine and Thymine on Zeolites: FT-IR and EPR Spectroscopy and X-Ray Diffractometry and SEM Studies. Origins of Life and Evolution of Biospheres, 2012, 42, 19-29.	0.8	22
31	Modelling of the pervaporative flux through hydrophilic membranes. Journal of Chemical Technology and Biotechnology, 2005, 80, 397-405.	1.6	21
32	Synthesis, Swelling, and Exfoliation of Microporous Lamellar Titanosilicate AMâ€4. European Journal of Inorganic Chemistry, 2011, 2011, 2247-2253.	1.0	21
33	Effect of relative humidity on the gas transport properties of zeolite A/PTMSP mixed matrix membranes. RSC Advances, 2018, 8, 3536-3546.	1.7	21
34	Separation of CO2-N2 gas mixtures: Membrane combination and temperature influence. Separation and Purification Technology, 2017, 188, 197-205.	3.9	20
35	Preparation and characterization of novel chitosanâ€based mixed matrix membranes resistant in alkaline media. Journal of Applied Polymer Science, 2015, 132, .	1.3	19
36	Sustainable Membraneâ€Coated Electrodes for CO ₂ Electroreduction to Methanol in Alkaline Media. ChemElectroChem, 2019, 6, 5273-5282.	1.7	19

CLARA CASADO-COTERILLO

#	Article	IF	CITATIONS
37	Mixed Matrix Membranes. Membranes, 2019, 9, 149.	1.4	18
38	Hybrid Ionic Liquid-Chitosan Membranes for CO2 Separation: Mechanical and Thermal Behavior. International Journal of Chemical Reactor Engineering, 2016, 14, 713-718.	0.6	17
39	High Performance of Alkaline Anion-Exchange Membranes Based on Chitosan/Poly (vinyl) Alcohol Doped with Graphene Oxide for the Electrooxidation of Primary Alcohols. Journal of Carbon Research, 2016, 2, 10.	1.4	15
40	Adenine interaction with and adsorption on Fe-ZSM-5 zeolites: A prebiotic chemistry study using different techniques. Microporous and Mesoporous Materials, 2016, 226, 493-504.	2.2	13
41	Preparation and Identification of Optimal Synthesis Conditions for a Novel Alkaline Anion-Exchange Membrane. Polymers, 2018, 10, 913.	2.0	13
42	Development of exfoliated layered stannosilicate for hydrogen adsorption. International Journal of Hydrogen Energy, 2014, 39, 13180-13188.	3.8	11
43	Effect of Humidity on CO2/N2 and CO2/CH4 Separation Using Novel Robust Mixed Matrix Composite Hollow Fiber Membranes: Experimental and Model Evaluation. Membranes, 2020, 10, 6.	1.4	11
44	Biopolymer-Based Mixed Matrix Membranes (MMMs) for CO2/CH4 Separation: Experimental and Modeling Evaluation. Membranes, 2022, 12, 561.	1.4	11
45	Effect of Water and Organic Pollutant in CO2/CH4 Separation Using Hydrophilic and Hydrophobic Composite Membranes. Membranes, 2020, 10, 405.	1.4	10
46	Chitosan: Polyvinyl alcohol based mixed matrix sustainable coatings for reusing composite membranes in water treatment: Fouling characterization. Chemical Engineering Journal Advances, 2022, 9, 100236.	2.4	10
47	Pervaporation and Gas Separation Using Microporous Membranes. Membrane Science and Technology, 2008, 13, 217-253.	0.5	8
48	Estimating CO2/N2 Permselectivity through Si/Al = 5 Small-Pore Zeolites/PTMSP Mixed Matrix Membranes: Influence of Temperature and Topology. Membranes, 2018, 8, 32.	1.4	8
49	Multiobjective Optimization Based on "Distance-to-Target―Approach of Membrane Units for Separation of CO2/CH4. Processes, 2021, 9, 1871.	1.3	8
50	Propane and 1,3,5-triisopropylbenzene single gas adsorption on hollow silicalite-1 spheres. Microporous and Mesoporous Materials, 2009, 120, 69-75.	2.2	7
51	Chitosan Feasibility to Retain Retinal Stem Cell Phenotype and Slow Proliferation for Retinal Transplantation. BioMed Research International, 2014, 2014, 1-10.	0.9	6
52	Techno-Economic Optimization of Multistage Membrane Processes with Innovative Hollow Fiber Modules for the Production of High-Purity CO ₂ and CH ₄ from Different Sources. Industrial & Engineering Chemistry Research, 2022, 61, 8149-8165.	1.8	6
53	Structural study on the Al distribution in zeolites Nu-6(1) and Nu-6(2). Microporous and Mesoporous Materials, 2011, 145, 211-216.	2.2	5
54	PERFORMANCE ASSESSMENT OF A POLYMER ELECTROLYTE MEMBRANE ELECTROCHEMICAL REACTOR UNDER ALKALINE CONDITIONS â [°] A CASE STUDY WITH THE ELECTROOXIDATION OF ALCOHOLS. Electrochimica Acta, 2016, 206, 165-175.	2.6	4

#	Article	IF	CITATIONS
55	Pervaporative Dehydration of an Industrial Ketonic Solvent Using Ceramic Silica Membranes. Materials Research Society Symposia Proceedings, 2002, 752, 1.	0.1	2
56	An Analysis of Research on Membrane-Coated Electrodes in the 2001–2019 Period: Potential Application to CO2 Capture and Utilization. Catalysts, 2020, 10, 1226.	1.6	2
57	Funcionamiento de una membrana de zeolita 4-A comercial en la deshidratación de disolventes industriales mediante pervaporación. Boletin De La Sociedad Espanola De Ceramica Y Vidrio, 2004, 43, 35-37.	0.9	2
58	Past, Present and Future of Membrane Technology in Spain. Membranes, 2021, 11, 808.	1.4	1
59	Study of alcohol diffusion through commercial anion exchange membranes for CO2 electrolyzers. , 0, , .		0